
PhysCov: Physical Test Coverage for Autonomous Vehicles

Carl Hildebrandt
The University of Virginia

Charlottesville, USA
hildebrandt.carl@virginia.edu

Meriel von Stein
The University of Virginia

Charlottesville, USA
meriel@virginia.edu

Sebastian Elbaum
The University of Virginia

Charlottesville, USA
selbaum@virginia.edu

ABSTRACT

Adequately exercising the behaviors of autonomous vehicles is fun-

damental to their validation. However, quantifying an autonomous

vehicle’s testing adequacy is challenging as the system’s behavior

is in�uenced both by its state as well as its physical environment.

To address this challenge, our work builds on two insights. First,

data sensed by an autonomous vehicle provides a unique spatial

signature of the physical environment inputs. Second, given the

vehicle’s current state, inputs residing outside the autonomous ve-

hicle’s physically reachable regions are less relevant to its behavior.

Building on those insights, we introduce an abstraction that enables

the computation of a physical environment-state coverage metric,

PhysCov. The abstraction combines the sensor readings with a phys-

ical reachability analysis based on the vehicle’s state and dynamics

to determine the region of the environment that may a�ect the

autonomous vehicle. It then characterizes that region through a

parameterizable geometric approximation that can trade quality

for cost. Tests with the same characterizations are deemed to have

had similar internal states and exposed to similar environments

and thus likely to exercise the same set of behaviors, while tests

with distinct characterizations will increase PhysCov. A study on

two simulated and one real system’s dataset examines PhysCovs’s

ability to quantify an autonomous vehicle’s test suite, showcases

its characterization cost and precision, investigates its correlation

with failures found and potential for test selection, and assesses its

ability to distinguish among real-world scenarios.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Test Adequacy, Coverage Metrics, Autonomous Systems

ACM Reference Format:

Carl Hildebrandt, Meriel von Stein, and Sebastian Elbaum. 2023. PhysCov:

Physical Test Coverage for Autonomous Vehicles. In Proceedings of the 32nd

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3597926.3598069

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598069

1 INTRODUCTION

This work explores a fundamental and open question in testing au-

tonomous vehicles: to what extent does a system test suite exercise

the potential system behaviors?

Typically, software engineers rely on abstractions of the input

space to de�ne equivalent input classes. The underlying principle is

that inputs within an equivalent class exercise similar behavior. If

the abstraction is e�ective at clustering inputs into classes that lead

to similar behavior, then the percentage of classes covered provides

a means to quantify the extent that a test suite exercises the system.

In the context of autonomous systems, such as autonomous

cars and drones, the system behavior is signi�cantly in�uenced

by the system’s state and its surrounding physical environment.

The vehicle’s pose, speed, and acceleration, the road topology, the

surrounding tra�c, the signage, and other objects in the environ-

ment in�uence the vehicle’s actions. Yet, existing adequacy criteria

are insu�cient to abstract autonomous vehicles’ system state and

environment into equivalent classes.

Structural code coverage [62, 65] and the coverage of learned

components [27, 64] are not cognizant of the system’s physical

state and environment attributes, resulting in distinct scenarios

that render the same coverage. The industry reported miles driven

criterion [6, 30] does not consider the state of the vehicle nor the

scenarios traveled, so miles driven at high or low speeds or through

suburban tra�c or multi-lane highway are considered equivalent.

Coverage of requirements de�ned by domain experts as per the

system state [28] or the environment [49] are valuable to establish

acceptance tests but are not scalable given the space of behaviors

triggered by state and environment. Scenario coverage [40] incor-

porates the physical environment by building a situation graph

containing the objects, their attributes, and their relationships in an

environment. This approach is feasible as long as the ground truth

graphs can be pre-computed, severely curtailing its applicability

beyond limited simulation environments. Trajectory coverage relies

on a vehicle position [26] but ignores other aspects of the system

state and the environment. This means, for example, that two tests

that cause the vehicle to visit the same positions are deemed equiv-

alent even if one does so at high speed while changing lanes while

the other does it at slower speeds while avoiding obstacles.

However, incorporating a vehicle’s state and physical environ-

ment into a coverage criterion is challenging for several reasons.

First, the vehicle’s state is rich and amenable to amyriad of represen-

tations, making the generalization of a coverage measure di�cult.

Second, the world has a practically in�nite number of complex

environments, which makes identifying equivalence classes and

estimating the total number of classes hard and onerous. Third,

the many subtle interactions between vehicle state and the envi-

ronment and how that a�ects a vehicle’s behavior means that any

coverage metrics must consider those dimensions jointly.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

449

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598069
https://doi.org/10.1145/3597926.3598069
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598069&domain=pdf&date_stamp=2023-07-13


ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Carl Hildebrandt, Meriel von Stein, and Sebastian Elbaum

Figure 1: A) An �(*) in two environments using two di�er-

ent behaviors. B) The �(*) senses the environment (solid

lines). C) Our approach characterizes the sensed reachable re-

gion as it is the most likely to in�uence its behavior (dashed

lines), through a series of vectors (blue solid lines). D) These

vectors provide distinct signatures, which we call RRS.

We address the de�ciencies of existing coverage criteria and the

above challenges by introducing a complementary abstraction, RRS

(Reduced Reachability Set), that identi�es the most relevant areas

of the environment to the autonomous system under test (�(*) ).

It builds on two basic principles. First, sensed environment inputs

in the spatial trajectory of the vehicle are likely more valuable and

should be retained. Second, the physical space where those inputs

reside can be geometrically approximated, and inputs with the same

approximations constitute an equivalence class. From a technical

perspective, those insights are leveraged by 1) incorporating the

current state and physical dynamics of the autonomous vehicle to

prune regions of the sensed input space that the vehicle cannot

reach in a time horizon, 2) performing a geometric vectorization

on the remaining input set to approximate its shape, and 3) pa-

rameterizing the RSS abstraction to trade approximation precision

(resolution of the equivalence classes) for computational cost.

Motivating example. Consider the vehicle in Figure 1 operat-

ing in two distinct testing scenarios (A). Both are scenarios that

the autonomous vehicle is expected to navigate, and both can trig-

ger a di�erent set of behaviors. The multi-lane highway requires

the car to be aware of other vehicles merging, it should overtake

slow-moving vehicles, and can expect that vehicles on the road are

moving in the same direction. The single-lane highway requires

the car to be aware of any intersections, it should avoid overtaking,

and it needs to be aware that the other lane is for tra�c in the

opposite direction. If an abstraction places both of these scenarios

into the same equivalence class, and cannot distinguish between

them, then their joint coverage will be underestimated. If another

scenario like the �rst one is added but the abstractions place it in

a di�erent equivalence class, then the test suite coverage will be

overestimated even though they would exhibit the same behaviors.

The goal of our approach is to identify meaningful di�erences

in the environment that may reveal distinct behaviors while group-

ing tests that may trigger the same behavior in the same equiva-

lence classes. It starts by reading the �(*) spatial sensors (e.g.,

LiDAR, radars, ultrasound) values, which capture some portion of

the physical world around the vehicle (B, solid lines). Then, using

the vehicle’s kinematic and dynamic models and current state (pose,

velocity, acceleration), it computes the region of the physical en-

vironment it is most likely to interact with (C, dashed lines). The

assumption is that this is the most relevant portion of the environ-

ment as no physical action produced by the �(*) could result in

the vehicle colliding with any part of the environment outside this

region (similar to how we stop worrying about a pedestrian looking

to cross the road after we have driven past them). We conjecture

that the intersection of these regions, the sensed and reachable

region, is the most relevant to the vehicle’s behavior. Our approach

then e�ciently approximates the shape of that region through a

parameterizable set of vectors (C, blue lines), 7 in this example,

that extends from the vehicle’s current position to the edge of the

region. The magnitude of those vectors provides a signature that

characterizes that particular input space at a given time, which

we call the RRS signature (D of Figure 1). Executing a test suite

will result in a sequence of such RRS signatures. Tests with the

same set of RRS signatures will be grouped into equivalence classes

as they are likely to have had similar internal states and external

environments and, thus, likely to produce the same set of behaviors.

An additional bene�t of our approach is that the total number of

unique RRS can be computed. The quotient of the exposed over the

potential total signatures is PhysCov.

Contributions. The main contributions of the paper are:

1) An abstraction RRS, and a newmetric, PhysCov, that allows quan-

tifying the extent to which a test suite exposes an �(*) to distinct

physical environments. The process underlying RRS is novel in how

it reduces the environments by integrating physical reachability

analysis and geometric vectorization of the reachable space.

2) The implementation and study of RRS and PhysCov on two

simulated and one real system datasets. The study shows RRS range

of applicability through its parameterization and PhysCov value

to judge the thoroughness of test suites in terms of the number of

distinct environments explored, how it can e�ectively assist in test

case selection, and how it can identify similar and distinct scenarios.

2 BACKGROUND

Testing software aims to expose faults and increase developers’

con�dence that the software is correct [59]. Test adequacy criteria

are useful to determine when enough testing has been done [42, 65].

The complexity of the input space and of the systems that consume

those inputs makes it challenging to assert the adequacy of a test

suite. We describe existing approaches to conquer those sources of

complexity.

2.1 Input and System Models Coverage

The �rst type of approach develops models of the input space and

judges to what extent a test suite covers those models. Goodenough

450



PhysCov: Physical Test Coverage for Autonomous Vehicles ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

and Gerhart [19], Hamlet [20], Ntafos et al. [43], and Weyuker et

al. [58], set the foundations for modeling the input space as equiva-

lence classes. For such approaches to be cost-e�ective, the rendered

classes must be homogeneous in the behavior they cause, and the

partitioning into classes must be e�cient. Today we see a range of

input models, from grammars for systems that consume strings [22]

to system con�gurations [35] and �nite sets of constraints [51]. The

second type of approach develops models of the system and judges

the extent a suite covers them. These models partition the input

space but do so relative to the implementation of the system. A

common type of this model is based on structural code coverage

metrics [5, 21, 24, 32, 60, 62, 65].

While these techniques have found success in traditional soft-

ware systems, they struggle with some attributes of autonomous

vehicles [34]. First, autonomous vehicle components are inherently

statistical in nature and thus result in non-deterministic behav-

iors [50]. Emerging work on coverage criteria for learned compo-

nents [39, 48] mitigates this challenge, but they constitute just one

of the sources of non-determinism. Second, regardless of the test,

many system components, such as those for control and planning,

tend to have a linear control �ow which causes code metrics to

saturate quickly. Alternative emerging criteria such as those based

on requirement coverage such as vehicle stability, assured clear

distance ahead, minimum separation [28], and covered features

such as dirt roads, bridges, or highways [49] are helpful in de�ning

critical acceptance tests. However, such enumerations cannot be

expected to de�ne the long tail of possible scenarios.

2.2 Physical Environment Coverage

In the context of autonomous systems, there are many approaches

for automatic test generation [1, 4, 11, 31, 46, 56]. This work is

novel in its focus on the environment to guide the testing pro-

cess [15, 16, 23, 52, 61]. For example, Fremont et al. develop a proba-

bilistic language to specify environments for testing the perception

components of autonomous systems [14], Gambi et al. use proce-

dural content generation to automatically create challenging scenar-

ios for autonomous vehicles [15, 16], and Altho� et al. create critical

situations with a small solution space where the autonomous vehi-

cle must avoid a collision [4]. However, none of these e�orts use a

coverage metric to determine test adequacy. Majzik et al. de�ned

scenario coverage [40], where a scenario describes a sequence of

scenes, and a scene describes a snapshot of the environment [53].

This approach falls short in that the process of converting any real

physical environment into an abstract representation does not scale,

and there is no mechanism to compute the total number of possible

scenes. Hu et al. compute coverage of road regions within a sce-

nario [26]. However, as they point out, this solution is limited as it

assumes rectangular roads, overlooks the temporal aspect of the

trajectory, and ignores the physical environment. Quantifying test

adequacy for autonomous vehicles per the state and environment

covered over the possible scenes remains an open problem.

3 PROBLEM DEFINITION

Consider an�(*) , with various spatial sensors (e.g., LiDAR, radar,

sonar). Given a test g , the �(*) will complete it by repeating three

basic operations: sensing the environment, processing the available

information, and acting on this knowledge. The ASUT starts in

an initial environment 40 ∈ E from the set of all environments

and an initial state B0 ∈ S from the set of all possible states. At

each point in time C , the �(*) ’s sensors provide an abstraction of

the environment. This abstraction 4B4=C is a function of both the

environment 4C at time C , but also the state BC (e.g., the pose of

the vehicle a�ects what portions of the environment it senses),

and can be described as 4B4=C = B4=B>AB (BC , 4C ). The combination of

system state and sensed environment are then used by the �(*)

to determine its next action 08 = ?A>24BB8=6(4
B4=
8 , B8 ). Through the

completion of an action, the �(*) will be presented with a new

environment 48+1 and state B8+1. Therefore, by performing g , the

�(*) will sense environments �B4= = ⟨4B4=
0
, 4B4=
1
, . . . , 4B4=C ⟩, that

will result in a sequence of actions � = ⟨01, 02, . . . , 0C ⟩.

Given the �(*) and a test suite T = (g1, g2, . . . , g: ), we aim to

measure the test adequacy of T . We judge T to be adequate if it

exposes the�(*) to all environment state pairs V = �B4= ×S since

that would guarantee exploration of all possible behaviors �. If,

after observing all resulting �, no failures are found, the system is

tested adequately. It is unlikely that T will expose the system to V ,

and thus we measure U ⊆ V , where U is the set of environment-state

pairs experienced during T . We can then compute test adequacy

using U
V
, and subsequently determine how well a system is tested.

Computing U
V
for a test suite is challenging for four main reasons.

First, the internal state of the �(*) is highly complex and can be

represented di�erently among implementations. Therefore, to be

broadly applicable, the approach needs to be system implementa-

tion and sensor agnostic. Second, autonomous systems operate in

the real world, which has a practically in�nite number of � and thus

�B4=8 , where each of the � are highly complex. Third, autonomous

systems can have several sensors and sensor types rendering dis-

tinct �B4=8 , further increasing the number of sensed environments.

Finally, sensors are often susceptible to noise. Therefore in the pres-

ence of the same physical environment, they may render di�erent

values when faced with the same environment.

Thus, to compute V = �B4= ×S, we �rst need an implementation-

independent way of identifying S. Second, we need a way to ab-

stract �B4= such that the abstraction is �nite and e�cient while

also allowing for the abstractions of the sensed environment to be

comparable so that they can be grouped into equivalence classes.

Third, we need the abstraction of �B4= to be sensor independent.

4 APPROACH

We now de�ne the RRS abstraction to compute PhysCov, a metric

to quantify the unique, relevant physical environments perceived

by the ASUT during the execution of a test suite.

4.1 Pipeline Overview

The goal of the approach is to approximate U
V
, the number of envi-

ronment state pairs seen in a given test suite (U), over the possible

environment state pairs (V). Figure 2 presents an overview of the

RRS abstraction pipeline to compute that approximation.

The pipeline takes as input the sequence of all visited environment-

state pairs ⟨�B4=, (⟩: , collected by executing each test : in g ∈ T on

the ASUT. The pipeline has three stages. First, the approach needs

to de�ne the region around the ASUT most relevant based on the

451



ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Carl Hildebrandt, Meriel von Stein, and Sebastian Elbaum

Figure 2: Overview - The approach starts with an initial test suite, and an ASUT. It then executes the test suite on the ASUT and

passes the state and sensor data to the RRS abstraction pipeline. This creates RRS signatures which can compute PhysCov.

ASUT state. To do this, the RRS pipeline uses the ASUT state BC at

each timestep C , to compute the ASUT ’s physical reachable set AC
at that time step, that is, the area or volume that the vehicle can

reach given its current state. This step incorporates the internal

state of the ASUT into the abstraction, as the reachable set requires

both the dynamic and kinematic model  and the ASUT ’s internal

state BC (e.g., position, velocity, acceleration). We assume that the

reachable set is the essential part of the sensed area, as any object

inside the reachable set is an obstacle that has the potential for

collision, while any object outside can not be hit regardless of the

autonomous vehicle’s behavior.

Second, the approach needs to identify the parts of the envi-

ronment most relevant to the current behavior of the ASUT. The

approach assumes the vehicle’s sensors capture 4B4=C , the portions

of the environment that drive its behavior. Then, it computes

AB4=C = 4B4=C ∩ AC . Thus A
B4=
C only contains sensor readings from

the physical world inside the area or volume de�ned by the reach-

able set, which we argue is the region most important to theASUT ’s

decision at time C . By removing all portions of the environment that

are not likely to a�ect the ASUT ’s decision-making, the approach

reduces the environment such that |'B4= | << |�B4= | << |� |.

Third, although AB4=C is signi�cantly smaller than the physical

environment, it has a complex geometry and is represented as

an innumerable continuous space. The approach needs a way to

characterize this identi�ed region so that it can be easily compared

with others and counted. The approach uses geometric vectorization

to approximate AB4=C using an array of vectors originating from the

autonomous vehicle. The unique sequence of vector magnitudes is

called an RRS signature. This process is object and sensor-agnostic

and can account for unexpected sensor readings, which one might

experience when operating in a new and unexpected environment.

The output of this �nal step is a sequence of RRS signatures, where

for each (BC , 4
B4=
C ) pair, there are an RRS signatures. The sequence

⟨''(⟩: represents an abstraction of the ASUT ’s sensed physical

environments as perceived by its states during the execution of g: .

The approach then passes the ⟨''(⟩: sequence through a func-

tion 5 to convert it into a coverage vector Ψ: . This function’s se-

mantics can vary depending on the user’s needs. For example, in our

study, 5 computes the coverage vector by reducing the ⟨''(⟩: into

the set of ''( signatures {''(}: . This represents all unique ''(

and thus environment state pairs seen during testing. Alternatively,

a more advanced function could count the number of times each

''( abstraction was seen, thus representing a count of the environ-

ment state pairs seen during testing. Another 5 could, for example,

account for the transitions between consecutive signatures.

When Ψ: represents the set of RRS signatures, the approach can

compute PhysCov, an approximation of U
V
. PhysCov represents the

percentage of environment state pairs experienced by the ASUT

over all possible environment state pairs. The approach computes

U = |{Ψ1 ∪ Ψ2 ∪ · · · ∪ Ψ: }|, where Ψ: = {''(}: . The approach

can then compute V as the total number of possible ''( signatures.

Computing V is possible as the approach knows the parameters to

the pipeline, such as the maximum length of the RRS signatures

and the total number of vectors used in the RRS signatures.

While the approach overcomes the problems de�ned in the prob-

lem statement, it also creates a metric whose properties provide

additional bene�ts. First, this approach is general, with the reach-

able set accounting for any possible internal state and the geometric

approximation accounting for any possible physical environment.

Second, tests with the same RRS signature are grouped into equiva-

lence classes. For a test to have the same RRS signature, it needs

to have a similar reachable set and internal state, as well as similar

sensed environments. When this happens, the autonomous vehicles

would likely behave similarly, and thus we can maintain equiva-

lence class consistency. Third, the approximation can be scaled

to increase or decrease the approximation’s �delity by adjusting

the number of vectors used. Fourth, the metric is �nite; we can

compute the denominator V prior to testing. Finally, our metric has

a linear cost O(=) with respect to the number of vectors used in

the geometric vectorization. The other signi�cant computation is

the generation of the reachable set, which is the target of much

recent work [12, 18, 55, 63].

4.2 RRS Signature Generation

Given ⟨�B4=, (⟩: = ⟨(4B4=
1
, B1), (4

B4=
2
, B2), . . . , (4

B4=
C , BC )⟩: produced

by test g: , the objective of RRS is to generate a sequence of signa-

tures ⟨''(⟩: = ⟨''(1, ''(2, . . . ''(C ⟩: . We will use the scenario in

Figure 3 as a running example to show the three stages to compute

such an RSS signature.

4.2.1 Reduction to Reachable Set. The reachability analysis com-

ponent aims to identify which parts of 4B4=C may a�ect the ASUT ’s

future actions. This is important as most systems perceive large

portions of the environment that are unlikely to in�uence their

behavior given the system’s current state. Consider a case where

4B4=C is generated using a LiDAR. The LiDARs used on today’s self-

driving cars operate using a 360-degree �eld of view and can detect

objects up to 300m away from the vehicle’s current position [54].

This would result in an environment 4;830AC that covers an area of

282743<2, most of which is not actively relevant to the ASUT. For

example, suppose the ASUT is moving forward at 70mph. In that

case, the space behind the ASUT is likely irrelevant, while the space

ahead of the vehicle is more likely to a�ect its behavior.

To identify the most relevant area, this component performs

physical reachability analysis1 [2, 29], a well-known approach at

1Distinct from code reachability [10] as it relies on the system’s physical attributes.

452



PhysCov: Physical Test Coverage for Autonomous Vehicles ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 3: Given an ASUT and its environment. The reachable set is computed to identify the regions more likely to a�ect

the ASUT behavior given its state within a time horizon. The resultant reachable set is then constrained using the sensed

environment. Last, the reduced reachable set is approximated using geometric vectorization, and the ''( signature is produced.

the center of many challenging tasks for mobile autonomous ve-

hicles. Given the system’s kinematics and dynamics, current state,

and a time horizon, this analysis computes a system’s attainable

region [38, 41, 55]. It does so by iteratively applying the set of ad-

missible control sequences to a system model with a known state.

More formally, the future state of a vehicle can be described using

nonlinear dynamics B8+1 = P(B8 , 08 ), where P is the plant model,

B8 is the current state, and 08 the current action. Given all valid

actions � at B8 , the vehicle’s reachable set A8 is computed through

equation 1 with ⊕ representing the geometric sum.

A8 = B8 ⊕

∫ 8+1

8
P(B8 , �)3C (1)

An illustration of the reachable set of a ground vehicle is shown

in Figure 3b (the cone-shaped region). The reachability set compu-

tation complexity depends on the system model’s complexity. A

car’s model uses dynamics and kinematics where the state of the

car can be described using B = [G,~, E,k ]) , which describes the G

and ~ position, the velocity E , and the orientation k [33, 45]. The

input to the system is D = [0, X], which describes the acceleration

0 and the front wheel steering angle X .

There are many techniques to compute the reachability set, trad-

ing accuracy and cost [3, 7, 13]. For example, an inexpensive ap-

proximation might use a geometric polytope that is constructed

using the ASUT maximum steering angle and a radius equivalent to

its maximum velocity. We use this approach in Figure 3b, where the

reachable set for the ASUT is described by a sector whose origin

is the ASUT ’s current position and the radius is de�ned by the

maximum distance the ASUT can traverse given its current linear

and angular speed. Alternatively, a more sophisticated reachability

analytical method would use the full ASUT kinematic and dynamic

models to describe the ASUT ’s motion [57].

The output of this component is illustrated in Figure 3-b. A

reachable set extends from the autonomous vehicle in a conical

area in front of it, and it includes the �re hydrant, the truck, and the

trailer, as these items are within the potential area the vehicle can

visit through a sequence of actions. The parked cars and groups of

people are not reachable within the speci�ed state and time horizon

and thus lie outside of the reachable set.

4.2.2 Reduction to the Sensed Reduced Reachable Set. The ASUT

continually captures and processes 4B4=C . A wide range of sensors

Algorithm 1: Geometric Vectorization Algorithm

1 Given AB4=
C

, BC , =, D, I
2 XXY = []

3 for i in = do
4 angle = D[8]

5 v = compute_vector(AB4=
C

, BC , angle)

6 discretized_v = round(v, I[8])

7 XXY .append(discretized_v)

8 end

9 return XXY

available for di�erent ASUT provide some form of spatial awareness,

and thus 4B4=C might come in various forms. Figure 3c shows 4B4=C as

a point cloud, a collection of points representing the sensed objects

around the ASUT.

This component integrates 4B4=C with the previously computed AC .

To account for the limited resolution of the sensors, our approach

in�ates each point using a user-de�ned parameter X represented as

the dashed lines in Figure 3c. This step ensures that when geometric

vectorization occurs, each vector will not pass through obstacles

sensed with limited resolutions. However, as the resolution of sen-

sors increases or the number of sensors increases, the need for

in�ation reduces. Any region of the reachable set that intersects

with this in�ated region is removed. Figures 3c shows the reduction

of AC to A
B4=
C , which now contains the reachable set constrained by

the sensed environment. The resulting reachable set is constrained

by the truck and the �re hydrant the vehicle could reach in the

speci�ed time horizon.

4.2.3 Reduced Reachable Set Vectorization. Once we have com-

puted AB4=C , the �nal step is to convert it from its current polytope

representation to a concise numeric characterization. We resort

to a vector approximation inspired by the centroid-to-boundary

shape analysis technique[37]. This technique approximates com-

plex shapes by computing the distance from a central point to all

boundary points of the shape. More speci�cally, given a speci�ed

number of vectors, the approach samples the AB4=C space with vec-

tors whose origin is the ASUT and magnitude is de�ned by their

intersection with the bounds of AB4=C , quickly providing a character-

ization of the sensed and reachable space we call the RRS signature.

Algorithm 1 describes the process in more detail. The inputs are

AB4=C , the current state of the ASUT BC , the total number of vectors

= used to characterize the space, the spread D of the vectors which

453



ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Carl Hildebrandt, Meriel von Stein, and Sebastian Elbaum

de�ne the angles between vectors, and the tick intervals I which

de�nes at which intervals vectors can be discretized. The algorithm

loops through the total number of vectors = in line 3. For each

vector, it �rst determines at what angle the vector should be from

the centerline de�ned by the ASUT ’s direction of travel from the

spread D as shown in line 4. For example, D might de�ne that

vectors are spaced evenly, 4 degrees apart from each other, spanning

from the centerline. In line 5, the algorithm computes the vector’s

magnitude from the ASUT ’s origin at the speci�ed angle until it

reaches the edge of the reachable set AB4=C . Next, in line 6, the vector

E is discretized by rounding to the nearest value de�ned by the tick

intervals I. For example, if the currents E ’s magnitude was 3.25

and I was de�ned as (1, 3, 5), then E would be discretized to the

value 3. Finally, in line 7, that discretized vector magnitude is added

to the ''( signature before being returned in line 9.

4.3 Usages of RRS Signature

The �nal step in the pipeline is to convert the sequence of ⟨''(⟩:
signatures into a coverage vector Ψ: . Multiple types of coverage

vectors can be computed, from one based on the unique signatures

exposed by a test to one that considers the number of times each

signature is executed or the transitions between signatures over

time. However, for the rest of the paper, we focus on the simplest

notion of signature coverage, identifying all unique ''( signatures

in ⟨''(⟩: , ⟨''(⟩: → {''(}: = Ψ: , which is similar to converting

a trace of lines of code covered into a coverage vector just containing

the unique lines that were executed.

4.3.1 PhysCov Computation. PhysCov aims to capture how much

of the relevant physical environment was covered by a test suite

and is de�ned in equation 2. Intuitively, this metric represents the

percentage of distinct environments perceived that are relevant to

the ASUT given its state. The number of distinct RRS abstractions U

is computed from the union of each of the coverage vectors from all

tests, such that U = Ψ1 ∪Ψ2∪ · · · ∪Ψ: . To compute V , the approach

enumerates all possible ''( signatures. Equation 2’s denominator

takes the product of all possible magnitudes each vector can obtain

and passes it through 5 to compute V . This, in e�ect, enumerates

all possible combinations of the tick intervals I, and thus we are

left with all possible combinations of ''( signatures. Then to enu-

merate all possible Ψ, we pass all possible combinations of ''(

signatures through 5 . A byproduct of our approach is that we can

control the total number of RRS signatures and vary the granularity

of PhysCov by varying = or I.

PhysCov =
U

V
=

Ψ1 ∪ Ψ2 ∪ · · · ∪ Ψ:

5
(

∏=
8=0

(

|I [8] |
)) (2)

4.3.2 Test Suite Selection. Test selection works on the principle

that coverage vectors Ψ are a good proxy for identifying equivalent

tests. If two tests produce the same Ψ then we judge that the tests

likely exposed the system to the same environment state pairs and

thus likely test the same behavior. Once the approach identi�es

each of the equivalent coverage vectors, it can construct a new test

suite T B4;42C with only a single test from each equivalence class

T B4;42C ⊆ T , where T B4;42C
= {g8 , g 9 ∈ T |Ψ8 ≠ Ψ9 }.

4.3.3 Test Suite Generation. The missing Ψ, Ψ<8BB8=6
= V − U ,

can be the drivers of a targeted test suite generation e�ort. Once

the approach has identi�ed Ψ
<8BB8=6 , it can construct each of the

missing ''( signatures using ''( = 5 −1 (Ψ<8BB8=6). Then for each

''( ∈ Ψ
<8BB8=6 , the approach can generate an environment state

pair that would result in that speci�c ''( signature being formed.

4.4 RRS Generalization

Computing RRS signatures is not restricted to 2D environments,

particular sensor types (as long as they provide a spatial character-

ization), or autonomous ground vehicles. For example, a quadro-

tor reachable set would resemble an upside-down cone, with the

quadrotor in the middle. Sensed obstacles could be used to remove

portions of the reachable set, which could then be approximated

using geometric vectorization.

5 STUDY

We aim to answer the following research questions:

RQ1) How e�ective is the coverage vector Ψ at grouping equiva-

lent environment inputs such that they cause similar behaviors?

Additionally, what is the impact of the ''( parameters on PhysCov?

RQ2)How e�ective is PhysCov at selecting tests that induce unique

failures?

RQ3) Can PhysCov distinguish similar from di�erent real scenar-

ios?

5.1 Experimental Setup

We evaluate PhysCov on three increasingly complex environments,

a tra�c kinematic simulation, a high-�delity simulation, and data

taken from a real autonomous system. This mimics real-world devel-

opment, where autonomous systems are �rst developed in simple

simulated environments, then in complex simulations, and �nally

tested in the real world. We now describe how we set up our envi-

ronments, what baselines we compared against, what evaluation

criteria were used, and how we instantiated our PhysCov pipeline.

5.2 Environments

5.2.1 HighwayEnv. Shown in Figure 4, HighwayEnv [36] is a min-

imalistic open-source simulator used to explore control and nav-

igation aspects of autonomous driving. The ego vehicle uses an

onboard sensor to track the position and velocity of the closest

tra�c vehicles and a rule-based navigation module to traverse the

highway. We con�gured the scenario by placing the ego vehicle

at one end of a highway, and the goal was for the ego vehicle to

navigate down the highway as fast as possible. The highway was

populated with between 1 and 10 vehicles placed randomly in front

of the ego vehicle. The �rst tra�c vehicle was spawned in a ran-

dom lane 15m in front of the ego vehicle. Subsequent vehicles were

spawned in random lanes using 2m intervals. The 10 tra�c vehicles

were allowed to operate between speeds of 15</B−25</B , while the

ego vehicle speeds were 15</B − 30</B . Each run lasts 25 seconds,

allowing the ego vehicle to overtake the other vehicles. If the ego

vehicle collides with another vehicle, the simulator removes that

vehicle and reduces the velocity of the ego vehicle. By allowing and

recording multiple collisions during each test, we could ensure that

all tests were precisely 25 seconds. We generated 1,000,000 tests to

454



PhysCov: Physical Test Coverage for Autonomous Vehicles ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 4: HighwayEnv[36], BeamNG[9], and the Waymo

Open Perception Dataset [47] environments.

explore the possible scenarios that could occur in HighwayEnv. Of

the 1,000,000 tests, 94% executed without any failures.

5.2.2 BeamNG. The second environment, shown in Figure 4, is

BeamNG.tech [9] (BeamNG), a versatile high-�delity vehicle simula-

tor with state-of-the-art soft-body physics, collision detection, and

sensors. The ego vehicle is controlled by BeamNG’s autonomous

driver module, which has approximately 2500 lines of code to per-

form speed and steering modulation, obstacle avoidance, and path

planning. We spawn between 1-10 tra�c vehicles at random lo-

cations in a 60< × 20< rectangle centered 30< ahead of the ego

vehicle. The vehicles had a speed limit of 120:</ℎ, while the ego

vehicle was 144:</ℎ (to allow the ego-vehicle to overtake the traf-

�c vehicles). The tra�c vehicles are controlled by BeamNG’s tra�c

module which maintains a tra�c density, so when a tra�c vehicle

is overtaken and thus no longer in the �eld of view of the ego

vehicle, it respawns the vehicle in front but out of sight of the ego

vehicle. Each run was con�gured to last 50 seconds. If a failure

occurred during the run, we let the autonomous vehicle software

try and recover for the rest of the test. BeamNG can not run faster

than real-time, and it has license restrictions for running multiple

instances, which limited the number of runs to 10,000 tests, which

took roughly a week of continuous execution on a high-end ma-

chine. The ego vehicle achieved an 87.39% success rate over all tests.

Although the success rate of both simulated systems is lower than

an ideal safety-critical system, it is �tting for our study as it allows

us to evaluate the failure detection capabilities of PhysCov.

5.2.3 Waymo Open Perception Dataset. Our third environment is

the real world as perceived by the Waymo vehicle (Waymo Open

Perception Dataset [47]). Using this real-world dataset allowed us to

evaluate PhysCov’s applicability to real-world systems, but we note

that it has no recorded failures and limited scenarios. So our focus

is on the ability of PhysCov to form equivalent input classes. Our

PhysCov pipeline uses sensor data from the mid-range LiDAR on

top of the vehicle and four short-range LiDARs (front, side left, side

right, and rear). We also use data from the 3 front-facing cameras to

understand and explain each scenario. We selected all 798 scenarios

from the training set. Each scenario contains a 20-second snippet of

autonomous vehicle driving, giving us a total of 15, 960 seconds of

real-world driving data captured at 10Hz, which results in 159,600

RRS signatures generated over the entire dataset.

5.3 Baseline Techniques

We consider several techniques mentioned in the related work: code

covered, miles driven, scenario coverage, and trajectory coverage.

Miles driven was discarded as all tests drive for a similar time and

distance, so it provided no valuable information. Scenario cover-

age was also dismissed as it requires full knowledge of the entire

environment and all relationships between objects in the environ-

ment, which is not feasible given the complexity of the BeamNG

or Waymo tests. Additionally, it is impractical for long and large

numbers of tests, given the amount of data it needs to track. Thus,

we ended up employing code and trajectory coverage.

5.3.1 Code Coverage. Since the control software for Highway-Env

is written in Python, we used the existing “Coverage.py” tool to com-

pute both the line and branch coverage[8]. BeamNG’s autonomous

control software is written in Lua, and coverage tools for Lua are

still quite limited (e.g., LuaCov[44]). Therefore, we implemented

our own tool to track line, branch, and intraprocedural prime path

coverage2, intraprocedural path coverage, and path coverage. The

source code for Waymo’s autonomous vehicle is not publicly avail-

able; thus, no code coverage was computed for Waymo.

5.3.2 Trajectory Coverage. Trajectory coverage measures the ex-

tent to which an autonomous vehicle covers discrete regions on a

road [26]. The measure requires users to de�ne a driving area, and

the original work assumes a rectangular bounded area to facilitate

its speci�cation. Next, the driving area is divided into equally sized

blocks. We set the block size to 1< × 1<, matching the original

paper. Each time the autonomous vehicle drives over one of the

blocks, it is marked as covered. Trajectory coverage is computed

as the set of blocks covered over the total number of blocks in the

driving area. As de�ned, the approach is “naive” in that assuming

most scenarios will consist of rectangular roads when most areas

actually consist of irregular shapes (e.g., a curve on the road). As

part of our study, we implement a version that supports irregu-

lar shapes that precisely match the curves of the road area while

also ignoring portions of the road that should not be covered, for

example, lanes with tra�c in the opposite direction. We call this

approach “improved” trajectory coverage.

5.4 Evaluation Criteria

To evaluate PhysCov, we primarily looked at two criteria, consis-

tency of equivalent classes and failures.

5.4.1 Equivalent Classes and Inconsistencies. A desirable coverage

abstraction will produce the smallest number of equivalent classes,

where all the inputs in each class lead to the same behavior. Thus, we

evaluate the coverage metrics in terms of the number of equivalence

classes they render and the consistency displayed by the rendered

classes. For example, for our proposed measure Ψ, two tests that

have the sameΨ are said to belong to the same equivalence class and

thus should generate the same behavior. For lines of code coverage,

two tests that exercise the same lines are said to belong to the same

equivalence class and should behave consistently. Similarly, two

tests are equivalent for trajectory coverage if they cover the same

blocks in the drivable area. We judge an equivalent class containing

tests that pass and fail to be inconsistent, while classes that contain

just passing or just failing tests to be consistent.

2In a prime path, each node cannot appear more than once, and it is not a subpath of
any other prime path.

455



ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Carl Hildebrandt, Meriel von Stein, and Sebastian Elbaum

5.4.2 Failures. There are no failures in the Waymo Perception

Open Dataset; thus, this metric was not computed for Waymo. For

the simulation environments, we count the number of failures and

the number of unique failures as they represent a re�nement of

the considered exposed behaviors. We de�ne failures as either a

crash or a stall. A crash occurs when the ego vehicle collides with

any obstacle, while a stall occurs when the ego vehicle comes to a

complete stop, even though there is a way to keep moving forward.

During each crash, we record the velocity of the tra�c vehicle, the

velocity of the ego vehicle, and the angle of incident. We then de�ne

a unique crash as one whose velocities and angle of the incident

match within a threshold of 1</B and 1 degree, respectively. Given

two crashes that fall inside this threshold, we argue that there was

only one unique crash, as the circumstances around the crash must

have been extremely similar to result in the same velocities and

angle of incidence. To detect a stall, we determine if the vehicle has

a velocity of less than 0.01</B and if the vehicle has an obvious

way to move forward. We de�ne having a way forward as there

being a 30-degree gap in front of the ego vehicle, with no obstacles.

We categorized stalls based on the distance and angle to the closest

object. This distance angle pair could then be compared to other

stalls to see if the stall happened under similar conditions and thus

used to identify unique stalls.

5.5 PhysCov Implementation

Implementing the PhysCov pipeline consists of �rst collecting the

state and sensor data from each vehicle, followed by the three

major steps described in the approach: reduction to reachable set,

reduction to sensed reachable set, and vectorization3.

5.5.1 State and Sensor Collection. To account for di�erences be-

tween each of the environment’s state and sensor formats, we

convert all data into a standard trace format that contains the cur-

rent time, position, velocity, heading, crash status, stall status, and

a 2D point cloud of all detected obstacles around the vehicle in

the vehicle’s frame of reference. The three environments we study

provide the ego vehicle’s time, position, velocity, and heading. Since

there are no crashes or stalls in theWaymo environment, these cells

were set to False. HighwayEnv tracks the crash status of vehicles

internally, so we modi�ed it to externalize it. BeamNG reports pre-

cise vehicle damage that we simpli�ed as a crash if any damage was

reported. Stalls were detected by checking when the ego vehicle’s

velocity was less than 0.01</B , and had a 30-degree gap in front

with no obstacles.

To capture the 2D point cloud, we used di�erent approaches

for each environment. For HighwayEnv, the only obstacles are the

tra�c vehicles and the road’s edge. Since we know the exact size of

the vehicles and the road’s edge is straight, we can geometrically

compute a 2D point cloud of all objects in the ego vehicle’s frame

of reference. BeamNG lets us equip the vehicle with a LiDAR that

returns a point cloud. We con�gured the LiDAR of the ego car

similar to those in commercial vehicles [54]. To focus the LiDAR

on obstacles ahead of the vehicle in a 2D plane, we con�gured it to

return a 180-degrees arc with a 0.1-degree range on the z-axis. Note

that in BeamNG, readings are returned with some environmental

3www.github.com/hildebrandt-carl/PhysicalCoverage

noise since the LiDAR follows the vehicle’s pitch and roll as it throt-

tles, brakes, or hits bumps in the road. Since BeamNG reports the

point clouds in the global frame, we convert it to the ego frame.

The Waymo dataset includes 5 cameras and 5 LiDARS, where each

LiDAR generates a 3D point cloud in the ego frame of reference,

with points up to 75 meters away. We combined each of the in-

dividual point clouds into a single high-�delity point cloud, and

then we removed all LiDAR points behind the ego vehicle, as these

points could not a�ect the approximated reachable set, leaving only

points within a 180-degree arc in front of the vehicle. Finally, we

�atten the LiDAR to generate a 2D cloud to points between 0.75<

above the ground and below 1.25< with respect to the ego vehicle,

as these are obstacles with which the vehicle might collide.

5.5.2 Reachable Set Computation. To compute a reachable set, we

need the vehicle’s state, including the initial position, linear velocity,

and angular velocity. Each of the ego vehicles returns the position

and linear velocity. We approximated the angular velocity as 0,

using the assumption that the majority of scenarios contain roads

without sharp turns and the ego vehicle moving forward, therefore

the magnitudes of angular velocity should always be extremely

small. Under this assumption, we can e�ciently approximate the

reachable set as a sector, as shown in Figure 3b. The sector’s origin

was set to the position of the ego vehicle.

The sector’s line of symmetry was set to match the direction

of travel of the ego vehicle. At a given time C , the sector’s radii

were computed based on a user-de�ned time horizon multiplied by

the vehicle’s maximum speed. When the vehicle is not traveling at

maximum speed, the sector results in an over-approximation of the

actual reachable space. This is acceptable in that we would rather

include additional spaces than ignore potentially dangerous obsta-

cles. The maximum velocity of the ego vehicle for HighwayEnv

was 110:</ℎ. Using E = 3 × C , and a timestep of 1 second, we

can compute that the sector’s radii should be 30<. Similarly, the

maximum speed for BeamNG and the Waymo vehicle was set to

144:</ℎ. Again using a time step of 1 second, we can compute that

the sector’s radii should be 40<.

Finally, the sector arc was set to match the maximum steering

angle of the vehicle. The maximum steering angle for HighwayEnv

was 30 degrees, resulting in a 60-degree arc. For BeamNG and

Waymo, we selected a generic Audi vehicle with a maximum steer-

ing angle of 33 degrees [25] (66-degree arc). While this sector-based

approximation could be more precise by accounting, for example,

for changes to the angular velocity, we favor its application because

it provides a safe over-approximation, is applicable across the three

environments, and its e�cient to compute, which is key given the

datasets’ sizes.

5.5.3 Sensed Reachable Set Computation and Vectorization. Our

implementation combines these two steps into a single computation.

It requires a user-de�ned point in�ation size X , total vectors =,

spread D, and tick intervals I. It starts by converting each point in

the cloud to a circle centered on the point with a radius X , which we

set to 0.2< (we empirically found this value to reduce the chances

that an object goes undetected while also avoiding obstructing other

objects). Next, the implementation creates = vectors, which stem

outward from the ego vehicle, based on � , which de�nes how we

spread the vectors out. It then computes the length of each vector

456

www.github.com/hildebrandt-carl/PhysicalCoverage


PhysCov: Physical Test Coverage for Autonomous Vehicles ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

from the origin of the ego vehicle to the �rst intersection, which

is either the edge of the reachable set or one of the points from

the point cloud. The real values representing the length of each

vector are then rounded as per � . These computations rely on the

“shapely” python package, which o�ers functionality to manipulate

and analyze planar geometric objects [17].

Below we give detail on how each of the parameters was de�ned.

Total vectors (=): We explore = between 1 and 10 to explore its

impact on the signatures generated. When = = 1, denoted as (Ψ1),

only a single vector was used to approximate AB4=C , resulting in a

''( signature with a single magnitude. When = = 10, denoted as

(Ψ10), the ''( signature included 10 magnitudes.

Spread D: We assumed that the region directly in front of the

vehicle was the most important. Therefore we designed D to favor

the center of the reachable set. The approach places vectors at

roughly 6-degree intervals from the centerline. For example, when

= = 1, a vector was placed on the centerline. When = = 2, two

vectors were placed at ±6 degrees. When = = 3, a vector was placed

on the centerline, and two vectors were placed at ±12 degrees, etc.

Tick Intervals I: RQ1 and RQ2 used failures as part of the evalu-

ation criteria, and since crashes occur in the region closest to the

vehicle, we set I = {5<, 10<} from the vehicle. RQ3 was applied to

a real dataset without failures and focused on categorizing and com-

paring real-world scenarios. Therefore we extended the resolution

to I = {5<, 15<, 25<, 35<} along each vector.

5.6 RQ#1 - Ψ E�ectiveness

This research question explores how e�ective PhysCov is at gener-

ating equivalent input classes. Tables 1 and 2 show, each baseline

and PhysCov for HighwayEnv and BeamNG. Speci�cally, they show

the number of classes generated, and for the classes with more than

one test, the number of consistent classes (containing only passing

or only failing tests), inconsistent classes (containing both failing

and passing tests), the average number of tests per class, and the

percentage of inconsistent classes.

First, we consider the baseline metrics. Line coverage groups

tests into 2754 and 151 classes for HighwayEnv and BeamNG, re-

spectively. Among the ones with multiple tests, 75% and 65% are

inconsistent. Branch coverage groups tests into 7097 and 146 classes,

reducing the inconsistency rate to 63% and 58% when compared

to line coverage. The more complex code coverage measures in

BeamNG do not fare any better. Intraprocedural prime path cover-

age produces more equivalence classes than both line and branch

coverage. However, the number of inconsistent classes actually

jumps from 64 and 56 to 113. The more exhaustive intraprocedural

path coverage and path coverage are overly speci�c, producing a

unique signature for each test, suggesting an inability to group any

tests. Similar to the complex code coverage measures, trajectory

coverage generates 650,123 and 10,000 signatures.

Next, we consider the di�erent parameters of Ψ. As expected, as

the total number of vectors increases, so does the number of equiv-

alent classes generated while the percentage of inconsistent classes

decreases. This highlights the ability of Ψ to vary the granularity of

analysis. For example, Ψ1 results in 2283 and 450 equivalent classes

with multiple tests for HighwayEnv and BeamNG, respectively.

Of these classes, 55% and 57% are inconsistent. As we increase

Table 1: Equivalent classes across metrics for HighwayEnv

All classes Only considering classes with more than 1 test

Cov
Metric

Equiv
classes

Equiv
classes

Inconsistent
classes

Avg # tests
in classes

Percentage
inconsistent
classes

Line 2754 2241 1672 446.0 75%

Branch 7097 4589 2889 217.4 63%

Traj 650123 41717 8155 9.4 20%

Ψ1 3335 2283 1251 437.6 55%

Ψ5 4096 1887 501 528.8 27%

Ψ10 41443 9004 1640 107.5 18%

Table 2: Equivalent classes across metrics for BeamNG

All classes Only considering classes with more than 1 test

Cov
Metric

Equiv
classes

Equiv
classes

Inconsistent
classes

Avg # tests
in classes

Percentage
inconsistent
classes

Line 151 99 64 100.5 65 %

Branch 146 97 56 102.6 58 %

I Prime
Path

421 151 113 64.4 75 %

I Path 10000 0 0 0 —

A Path 10000 0 0 0 —

Traj 10000 0 0 0 —

Ψ1 682 450 258 21.7 57 %

Ψ5 1594 330 132 26.5 40 %

Ψ10 3628 440 139 15.5 32 %

the approximation quality, the number of consistent classes with

multiple tests increases, while the number of inconsistent classes

with multiple tests decreases. Our most detailed approximation,

Ψ10, results in 9004 equivalent classes with multiple tests for High-

wayEnv, while staying roughly consistent at 440 for BeamNG, 18%

and 32% being inconsistent. This highlights our metric’s ability to

scale its abstraction granularity while also creating more consistent

equivalent classes with multiple tests.

To compare the baseline metrics versus PhysCov, we can iden-

tify the ΨG where the choice of G helps to render the number of

equivalent classes observed in the baseline coverage measure. In

HighwayEnv, branch coverage groups tests into 7097 equivalent

classes.Ψ5 is the closest, grouping tests into 4096 classes.Ψ5 has 27%

of inconsistent classes, less than half of branch coverage. Trajectory

coverage generated 650, 123 equivalent classes, which is 15 times

more classes than our most speci�c metric Ψ10. One might argue

that trajectory coverage performs well since it generates 41, 717

classes with multiple tests with 20% inconsistency, while Ψ10 only

generates 9004 with 18%. However, a class generated by trajectory

coverage has, on average, 9 tests while Ψ10 classes have, on aver-

age, 107 tests. This indicates that trajectory coverage is generating

overly speci�c classes that add no value compared with Ψ10. For

BeamNG, establishing a fair comparison against code coverage met-

rics is more di�cult as even Ψ1 renders more classes. However, to

capture the more complex environments Ψ5 is su�cient to reduce

the inconsistency rate to 40%, and with Ψ10 the inconsistency rate

is 32%, half that of branch coverage. The results for trajectory cover-

age align with those from Highway-Env. It generates overly speci�c

classes, in fact, so speci�c that no tests were grouped together.

Next, we examine PhysCov as the size of the test suite size in-

creases through Figure 5 for BeamNG (similar trends can be ob-

served for HighwayEnv, and we share those results in our artifact3).

The shaded regions show the minimum and maximum coverage

for the test suite size. To generate these regions, we computed

457



ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Carl Hildebrandt, Meriel von Stein, and Sebastian Elbaum

Figure 5: PhysCov for tests in BeamNG

each line 10 times while randomly varying the order in which tests

were added to the test suite. These �gures show three trends. First,

code coverage measures, naive trajectory coverage, and Ψ1 saturate

within the �rst 50 tests, while Ψ2 saturates within the �rst 1000

tests. These metrics su�er as their resolution is too limited to be

helpful as adequacy metrics. Second, when G in ΨG increases, the

coverage achieved grows rapidly before starting to level o�. This

is because, as time passes, tests conducted on the same scenario

struggle to reveal new coverage. The improved trajectory coverage

is comparable to Ψ7. While this is promising, one concern is that if

we were to add a new scenario, for example, a similar highway in

another city, trajectory coverage would require a second derivable

area to be de�ned, and show a sudden vertical drop in coverage

as the denominator would have doubled (assuming the new deriv-

able area is the same size as the old), while PhysCov’s denominator

would not change. This would happen for any scenario, regardless

of its similarity or di�erence. This thought experiment indicates an-

other shortcoming of trajectory coverage, which would either need

to know all possible scenarios which may be covered beforehand

(so that a static denominator could be computed), or each time a

new scenario was added, the denominator would change, and the

coverage achieved would drop. The third and �nal trend is that

similar to the higher Ψ, the unique number of failures also levels

o� with a greater number of tests as new faults become more di�-

cult to expose. Next, we explore whether the correlation between

failures and coverage supports this observation.

Since the correlation between unique failures detected and cov-

erage is expected to temper as a metric saturates, we explore this

relation over small suites consisting of 10, 50, 100, 500, 1000, and

5000 tests. We generate 1000 suites of each size and compute the

correlation between the test suites coverage and the unique failures

detected. The resulting Pearson correlation coe�cients are shown

in Tables 3 and 4. These tables show a stark contrast between struc-

tural code coverage and PhysCov. There is almost no correlation

between the structural code coverage metrics and unique failures

found. When looking at trajectory coverage, there appears to be a

moderate correlation between trajectory coverage and failures, with

increases for larger suites. Analyzing this increase in correlation

revealed that the de�nition of unique failures arti�cially favored

this metric as crashes in identical circumstances (e.g., velocity and

Table 3: Correlation between coverage and unique failures

found for test suites of di�erent sizes in HighwayEnv.

Test
Suite
Size

Line
Coverage

Branch
Coverage

Naive
Trajectory
Coverage

Improved
Trajectory
Coverage

PhysCov
(Ψ5)

PhysCov
(Ψ10)

10 0.09 0.10 0.02 — 0.63 0.69

50 0.00 0.02 0.05 — 0.55 0.68

100 0.05 0.05 0.20 — 0.43 0.64

500 -0.02 -0.02 0.23 — 0.21 0.47

1000 nan -0.02 0.22 — 0.20 0.37

5000 nan 0.08 0.09 — 0.05 0.32

Table 4: Correlation between coverage and unique failures

found for test suites of di�erent sizes in BeamNG.

Test
Suite
Size

Line
Coverage

Branch
Coverage

Naive
Trajectory
Coverage

Improved
Trajectory
Coverage

PhysCov
(Ψ5)

PhysCov
(Ψ10)

10 0.05 0.05 -0.22 -0.22 0.04 0.50

50 0.04 0.05 -0.05 -0.05 0.39 0.49

100 -0.04 -0.03 0.03 0.03 0.27 0.43

500 -0.02 -0.04 0.21 0.21 0.18 0.29

1000 0.07 0.09 0.25 0.25 0.11 0.20

5000 0.07 0.08 0.20 0.20 0.07 0.19

angle of collision, number of vehicles, and obstacles in the vicin-

ity) occurring in di�erent sections of the track were independently

counted. This indicates that this metric may be complementary to

Ψ and that Ψ parameters may need to be adjusted based on the

failure type. Still, Ψ10 correlation is greater for all suites. Finally,

when we consider PhysCov, there is also a modest correlation be-

tween failures and PhysCov, and the strength of the correlation

varies across two factors. First, using a higher resolution RRS ab-

straction always produces test suites with a higher correlation with

failures. Second, and as expected, increasing the number of tests

using the same scenario weakens the correlation as coverage starts

to saturate. Moving to ΨG where G > 10 is likely to mitigate this.

5.7 RQ#2 - Test Selection using PhysCov

This research question explores how e�ective PhysCov is as a test

selectionmetric and its ability to select test suites that induce unique

failures. The previous research question suggested that PhysCov

did indeed correlate with unique failures. If this were true, we

should be able to select test suites that maximize PhysCov, which

in turn would maximize the unique failures found. We generated

100 test suites between 0 and 1% of the original test suite size by

repeatedly randomly sampling 100 tests from the original test suite

and greedily adding the test that either maximizes or minimizes

the PhysCov of the current test suite.

Figure 6 shows the unique failures found by each of the 100 test

suites for both HighwayEnv and BeamNG. Each �gure shows test

suites that were selected to maximize PhysCov, minimize PhysCov,

or selected randomly. These �gures reveal two insights. First, test

suites selected to maximize PhysCov always detect more unique

failures than randomly selected suites. Second, minimizing PhysCov

always produces test suites with fewer, generally none, unique

failures. This shows that PhysCov is a good metric for selecting

tests and reducing a test suite size. Once again, there is slightly more

variance in the results of BeamNG, likely due to its complexity and

noisier environment. Overall these results indicate that PhysCov is

a viable metric for test selection. We could use PhysCov to select

a minimal number of tests while retaining the number of unique

behaviors and, in turn, failures found.

458



PhysCov: Physical Test Coverage for Autonomous Vehicles ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Figure 6: Unique failures found when selecting test suites

that maximize or minimize PhysCov

5.8 RQ#3 - Real-World Scenarios

This research question explores how e�ective PhysCov is on a real

dataset. As con�gured, this dataset provided 3.1% coverage using

Ψ10, so this dataset is clearly missing many potential environments

the vehicle will encounter.

Beyond this simple characterization, this study aims to assess

PhysCov potential at distinguishing between similar and di�erent

real-world scenarios. The study explores this problem from two

angles. First, using the camera images, we identi�ed 3 tests where

the vehicle was operating in clearly distinct scenarios (parking

lot, two-lane rural road, single-lane urban road), and 3 tests where

the vehicle was operating in very similar environments (variations

of highways). These are shown in the �rst row of Table 5. We

conjecture that if PhysCov was an e�ective metric at identifying

equivalent classes, the 3 distinct scenarios should also produce

distinct RRS signatures, while 3 similar scenarios should produce

more similar RRS signatures. The results in the second row of

Table 5 support this conjecture. Each test is roughly 20 seconds, with

data recorded at 10Hz, resulting in 199 RRS vectors. Interestingly

we see that the distinct scenarios B and C have 3 overlapping RRS

signatures, while scenario C has no overlap. This makes sense when

considering that despite the di�erences of scenario B (single-lane

urban road) and scenario C (dual-lane rural road), they both are

narrow roads, so there is a chance of some overlap in RRS. However,

scenario A is a parking lot that is signi�cantly di�erent from both

other scenarios and thus has no RRS overlap.

In the second part of this study, we selected 3 tests that produced

the least and 3 that produced the most overlap in terms of RRS

signatures. To do this, we compared all 3-way combinations of

Waymo’s 798 tests, a total of 84,376,796 combinations, and then

selected the least and most overlapped combination, as shown in

the third row of Table 5. The Venn diagram indicates that distinct

scenarios have no overlap, while similar scenarios produce nearly

139 identical RRS signatures. We conjecture that if PhysCov was a

good metric, the tests with no overlap should intuitively be required

to perform distinct behaviors, while tests with overlap should re-

quire similar behaviors. The �fth row in Table 5 shows camera data

from the selected tests. When selecting distinct RRS vectors, we

ended up with 3 distinct scenarios: a busy intersection, a one-way

downtown city road, and a two-lane road with a separator. The sce-

narios with similar RRS signatures corresponded to three scenarios

where the Waymo vehicle was stuck in dense tra�c. Interestingly

two of these scenarios (A and B) stem from the same root test, even

though Waymo provided them as separate tests.

Table 5: Comparing overlap between RRS when selecting

based on Scenarios and RRS signatures.

Selection
Method

Distinct Similar

Given
Scenarios

Resultant
RRS

Given RRS

Resultant
Scenarios

Overall, RQ3 shows that our technique can be applied to real

world datasets and can distinguish between di�erent and similar

scenarios, which is helpful in deciding how best to optimize and

augment a test suite.

6 CONCLUSION

This paper introduces a general approach to quantify the number

of unique environments experienced by an autonomous vehicle.

It relies on a novel abstraction of the sensed environments, ''( ,

that employs physical reachability analysis based on the vehicle

state and kinematics and dynamics to identify the most relevant

area of the input space and e�ciently produces a vector-based char-

acterization of that space. Our study illustrates how Ψ can render

meaningful equivalent classes to capture the environments, its cor-

relation with failures, and how the ''( parameters can control the

quality and cost of PhysCov. The study also shows the potential

of Ψ to improve the e�ciency of the testing process through test

selection and distinguish among di�erent real-world scenarios.

In the future, we would like to dig deeper into richer state and

reachability models that o�er more precision and more sophisti-

cated characterization techniques of the sensed reachable space. We

would also like to empirically explore several factors and parame-

ters, like the time horizons and the application to other autonomous

vehicles such as drones. Last, we would like to start exploiting the

potential synergy between the proposed approach and the tech-

niques being developed for test generation for autonomous vehicles,

where Ψ could be used to assess and guide those techniques.

ACKNOWLEDGMENTS

This work was funded in part through NSF grants #1924777 and

#1909414, and AFOSR grant #FA9550-21-1-0164.

459



ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Carl Hildebrandt, Meriel von Stein, and Sebastian Elbaum

REFERENCES
[1] Raja Ben Abdessalem, Shiva Nejati, Lionel C Briand, and Thomas Stifter. 2018.

Testing vision-based control systems using learnable evolutionary algorithms.
In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 1016–1026.

[2] Matthias Altho� and John M Dolan. 2014. Online veri�cation of automated road
vehicles using reachability analysis. IEEE Transactions on Robotics 30, 4 (2014),
903–918.

[3] Matthias Altho�, Goran Frehse, and Antoine Girard. 2021. Set propagation
techniques for reachability analysis. Annual Review of Control, Robotics, and
Autonomous Systems 4, 1 (2021).

[4] Matthias Altho� and Sebastian Lutz. 2018. Automatic generation of safety-critical
test scenarios for collision avoidance of road vehicles. In 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 1326–1333.

[5] Mauro Baluda, Pietro Braione, Giovanni Denaro, and Mauro Pezzè. 2010. Struc-
tural coverage of feasible code. In Proceedings of the 5th Workshop on Automation
of Software Test. 59–66.

[6] Subho S Banerjee, Saurabh Jha, James Cyriac, Zbigniew T Kalbarczyk, and Ravis-
hankar K Iyer. 2018. Hands o� the wheel in autonomous vehicles?: A systems
perspective on over a million miles of �eld data. In 2018 48th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN). IEEE,
586–597.

[7] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. 2017. Hamilton-
jacobi reachability: A brief overview and recent advances. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC). IEEE, 2242–2253.

[8] Ned Batchelder. 2022. Coverage.py. https://github.com/nedbat/coveragepy.
[9] BeamNG GmbH. [n. d.]. BeamNG.tech. https://www.beamng.tech/
[10] Ahmed Bouajjani, Javier Esparza, and Oded Maler. 1997. Reachability analysis of

pushdown automata: Application to model-checking. In International Conference
on Concurrency Theory. Springer, 135–150.

[11] Alessandro Calò, Paolo Arcaini, Shaukat Ali, Florian Hauer, and Fuyuki Ishikawa.
2020. Generating avoidable collision scenarios for testing autonomous driving
systems. In 2020 IEEE 13th International Conference on Software Testing, Validation
and Veri�cation (ICST). IEEE, 375–386.

[12] Mo Chen, Sylvia Herbert, and Claire J Tomlin. 2016. Fast reachable set approxima-
tions via state decoupling disturbances. In 2016 IEEE 55th Conference on Decision
and Control (CDC). IEEE, 191–196.

[13] Martin Fauré, Jérôme Cieslak, David Henry, Anatole Verhaegen, and Finn
Ankersen. 2022. A Survey on Reachable Set Techniques for Fault Recoverability
Assessment. IFAC-PapersOnLine 55, 6 (2022), 272–277.

[14] Daniel J Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L
Sangiovanni-Vincentelli, and Sanjit A Seshia. 2019. Scenic: a language for scenario
speci�cation and scene generation. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 63–78.

[15] Alessio Gambi, Tri Huynh, and Gordon Fraser. 2019. Generating e�ective test
cases for self-driving cars from police reports. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 257–267.

[16] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically testing self-
driving cars with search-based procedural content generation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
318–328.

[17] Sean Gillies et al. 2007–. Shapely: manipulation and analysis of geometric objects.
https://github.com/Toblerity/Shapely

[18] Antoine Girard and Colas Le Guernic. 2008. E�cient reachability analysis for
linear systems using support functions. IFAC Proceedings Volumes 41, 2 (2008),
8966–8971.

[19] John B Goodenough and Susan L Gerhart. 1975. Toward a theory of test data
selection. IEEE Transactions on software Engineering 2 (1975), 156–173.

[20] Dick Hamlet. 2000. On subdomains: Testing, pro�les, and components. In Pro-
ceedings of the 2000 ACM SIGSOFT international symposium on Software testing
and analysis. 71–76.

[21] Mary Jean Harrold and Mary Lou So�a. 1989. Interprocedual data �ow testing.
ACM SIGSOFT software engineering notes 14, 8 (1989), 158–167.

[22] Nikolas Havrikov. 2017. E�cient fuzz testing leveraging input, code, and exe-
cution. In 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 417–420.

[23] Carl Hildebrandt, Sebastian Elbaum, Nicola Bezzo, and Matthew B Dwyer. 2020.
Feasible and stressful trajectory generation for mobile robots. In Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
349–362.

[24] Joseph Robert Horgan and Saul London. 1991. Data �ow coverage and the C
language. In Proceedings of the symposium on Testing, analysis, and veri�cation.
87–97.

[25] Michael House. 2016. Typical Maximum steering angle of a real
car. https://gamedev.stackexchange.com/questions/50022/typical-maximum-
steering-angle-of-a-real-car

[26] Zhisheng Hu, Shengjian Guo, Zhenyu Zhong, and Kang Li. 2021. Coverage-
based scene fuzzing for virtual autonomous driving testing. arXiv preprint
arXiv:2106.00873 (2021).

[27] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun,
Emese Thamo, Min Wu, and Xinping Yi. 2020. A survey of safety and trust-
worthiness of deep neural networks: Veri�cation, testing, adversarial attack and
defence, and interpretability. Computer Science Review 37 (2020), 100270.

[28] Sae International. 2018. Taxonomy and de�nitions for terms related to driving
automation systems for on-road motor vehicles. SAE (2018).

[29] Reza N Jazar. 2010. Theory of applied robotics: kinematics, dynamics, and control.
Springer Science & Business Media.

[30] Nidhi Kalra and Susan M Paddock. 2016. Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability? Transporta-
tion Research Part A: Policy and Practice 94 (2016), 182–193.

[31] BaekGyu Kim, Akshay Jarandikar, Jonathan Shum, Shinichi Shiraishi, and
Masahiro Yamaura. 2016. The SMT-based automatic road network generation in
vehicle simulation environment. In 2016 International Conference on Embedded
Software (EMSOFT). IEEE, 1–10.

[32] Raimund Kirner. 2009. Towards preserving model coverage and structural code
coverage. EURASIP Journal on Embedded Systems 2009 (2009), 1–16.

[33] Jason Kong, Mark Pfei�er, Georg Schildbach, and Francesco Borrelli. 2015. Kine-
matic and dynamic vehicle models for autonomous driving control design. In
2015 IEEE Intelligent Vehicles Symposium (IV). IEEE, 1094–1099.

[34] Philip Koopman and Michael Wagner. 2016. Challenges in autonomous vehicle
testing and validation. SAE International Journal of Transportation Safety 4, 1
(2016), 15–24.

[35] Rick Kuhn, Raghu N Kacker, Yu Lei, and Dimitris Simos. 2020. Input Space
Coverage Matters. Computer 53, 1 (2020), 37–44.

[36] Edouard Leurent. 2018. An Environment for Autonomous Driving Decision-
Making. https://github.com/eleurent/highway-env.

[37] Sven Loncaric. 1998. A survey of shape analysis techniques. Pattern recognition
31, 8 (1998), 983–1001.

[38] John Lygeros. 2004. On reachability and minimum cost optimal control. Auto-
matica 40, 6 (2004), 917–927.

[39] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 120–131.

[40] István Majzik, Oszkár Semeráth, Csaba Hajdu, Kristóf Marussy, Zoltán Szatmári,
Zoltán Micskei, András Vörös, Aren A Babikian, and Dániel Varró. 2019. Towards
system-level testing with coverage guarantees for autonomous vehicles. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engineering Languages
and Systems (MODELS). IEEE, 89–94.

[41] Ian MMitchell, Alexandre M Bayen, and Claire J Tomlin. 2005. A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic games.
IEEE Transactions on automatic control 50, 7 (2005), 947–957.

[42] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

[43] Simeon C Ntafos. 1984. On required element testing. IEEE Transactions on
Software Engineering 6 (1984), 795–803.

[44] Kepler Project. 2022. luacov. https://github.com/keplerproject/luacov.
[45] Rajesh Rajamani. 2011. Vehicle dynamics and control. Springer Science & Business

Media.
[46] Elias Rocklage, Heiko Kraft, Abdullah Karatas, and Jörg Seewig. 2017. Automated

scenario generation for regression testing of autonomous vehicles. In 2017 ieee
20th international conference on intelligent transportation systems (itsc). IEEE,
476–483.

[47] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai
Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay
Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger,
Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens, Zhifeng
Chen, and Dragomir Anguelov. 2020. Scalability in Perception for Autonomous
Driving: Waymo Open Dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[48] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. 2019. Structural test coverage criteria for deep neural networks.
ACM Transactions on Embedded Computing Systems (TECS) 18, 5s (2019), 1–23.

[49] Eric Thorn, Shawn C Kimmel, Michelle Chaka, Booz Allen Hamilton, et al. 2018.
A framework for automated driving system testable cases and scenarios. Technical
Report. United States. Department of Transportation. National Highway Tra�c
Safety . . . .

[50] Sebastian Thrun. 2000. Probabilistic algorithms in robotics. Ai Magazine 21, 4
(2000), 93–93.

[51] Petar Tsankov, Mohammad Torabi Dashti, and David Basin. 2013. Semi-valid
input coverage for fuzz testing. In Proceedings of the 2013 International Symposium
on Software Testing and Analysis. 56–66.

[52] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski.
2018. Simulation-based adversarial test generation for autonomous vehicles with

460

https://github.com/nedbat/coveragepy
https://www.beamng.tech/
https://github.com/Toblerity/Shapely
https://gamedev.stackexchange.com/questions/50022/typical-maximum-steering-angle-of-a-real-car
https://gamedev.stackexchange.com/questions/50022/typical-maximum-steering-angle-of-a-real-car
https://github.com/eleurent/highway-env
https://github.com/keplerproject/luacov


PhysCov: Physical Test Coverage for Autonomous Vehicles ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

machine learning components. In 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 1555–1562.

[53] Simon Ulbrich, Till Menzel, Andreas Reschka, Fabian Schuldt, and Markus Mau-
rer. 2015. De�ning and substantiating the terms scene, situation, and scenario
for automated driving. In 2015 IEEE 18th International Conference on Intelligent
Transportation Systems. IEEE, 982–988.

[54] Velodyne Lidar. [n. d.]. Alpha Prime. https://velodynelidar.com/products/alpha-
prime/

[55] Abraham P Vinod, Baisravan HomChaudhuri, and Meeko MK Oishi. 2017. For-
ward stochastic reachability analysis for uncontrolled linear systems using fourier
transforms. In Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control. 35–44.

[56] Meriel von Stein and Sebastian Elbaum. 2021. Automated Environment Reduction
for Debugging Robotic Systems. In 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 3985–3991.

[57] Kenneth J Waldron and James Schmiedeler. 2016. Kinematics. In Springer hand-
book of robotics. Springer, 11–36.

[58] E. Weyuker and B. Jeng. 1991. Analyzing Partition Testing Strategies. IEEE Trans.
Software Eng. 17 (1991), 703–711.

[59] Elaine J Weyuker. 1983. Assessing test data adequacy through program inference.
ACM Transactions on Programming Languages and Systems (TOPLAS) 5, 4 (1983),

641–655.
[60] Elaine J. Weyuker. 1988. The evaluation of program-based software test data

adequacy criteria. Commun. ACM 31, 6 (1988), 668–675.
[61] TreyWoodlief, Sebastian Elbaum, and Kevin Sullivan. 2021. Fuzzing Mobile Robot

Environments for Fast Automated Crash Detection. In 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 5417–5423.

[62] Qian Yang, J Jenny Li, and David Weiss. 2006. A survey of coverage based testing
tools. In Proceedings of the 2006 international workshop on Automation of software
test. 99–103.

[63] Esen Yel, Tony X Lin, and Nicola Bezzo. 2018. Self-triggered adaptive planning and
scheduling of uav operations. In 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 7518–7524.

[64] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering
(2020).

[65] Hong Zhu, Patrick AV Hall, and John HR May. 1997. Software unit test coverage
and adequacy. Acm computing surveys (csur) 29, 4 (1997), 366–427.

Received 2023-02-16; accepted 2023-05-03

461

https://velodynelidar.com/products/alpha-prime/
https://velodynelidar.com/products/alpha-prime/

	Abstract
	1 Introduction
	2 Background
	2.1 Input and System Models Coverage
	2.2 Physical Environment Coverage

	3 Problem Definition
	4 Approach
	4.1 Pipeline Overview
	4.2 RRS Signature Generation
	4.3 Usages of RRS Signature
	4.4 RRS Generalization

	5 Study
	5.1 Experimental Setup
	5.2 Environments
	5.3 Baseline Techniques
	5.4 Evaluation Criteria
	5.5 PhysCov Implementation
	5.6 RQ#1 -  Effectiveness
	5.7 RQ#2 - Test Selection using PhysCov
	5.8 RQ#3 - Real-World Scenarios

	6 Conclusion
	Acknowledgments
	References

