

Blending Kinematic and Software Models for Tighter Reachability Analysis

Carl Hildebrandt, Sebastian Elbaum, Nicola Bezzo Contact: hildebrandt.carl@virginia.edu

This work was funded in part by the NSF

Motivation

Reachable sets are critical for path planning and navigation of mobile autonomous systems.

 $R_i = \boldsymbol{q}(t_i) \oplus \int_{t_0}^{t_e} f(\boldsymbol{q}(t_i), \boldsymbol{U}) dt$

 $R_i = \boldsymbol{q}(t_i) \oplus \int_{t_0}^{t_e} f(\boldsymbol{q}(t_i), \boldsymbol{U}) dt$

 $R_i = \boldsymbol{q}(t_i) \oplus \int_{t_0}^{t_e} f(\boldsymbol{q}(t_i), \boldsymbol{U}) dt$

 $R_i = \boldsymbol{q}(t_i) \oplus \int_{t_0}^{t_e} f(\boldsymbol{q}(t_i), \boldsymbol{U}) dt$

 $R_i = \boldsymbol{q}(t_i) \oplus \int_{t_0}^{t_e} f(\boldsymbol{q}(t_i), \boldsymbol{U}) dt$

. . .

SCHOOL of ENGINEERING & APPLIED SCIENCE

 $R_i = \boldsymbol{q}(t_i) \oplus \int_{t_0}^{t_e} f(\boldsymbol{q}(t_i), \boldsymbol{U}) dt$

Traditional Reachable Sets

$$R_i = \boldsymbol{q}(t_i) \oplus \int_{t_0}^{t_e} f(\boldsymbol{q}(t_i), \boldsymbol{U}) dt$$

Set of Physical Inputs

Figure reference) http://techartandstuff.blogspot.com/2013/07/how-to-create-accurate-car-steering-rig.html

Problem

If you bought a premium-class automobile recently, "it probably contains close to 100 million lines of software code." - Manfred Broy, professor of informatics at Technical University

Traditional Reachable Sets

 $R_i = \boldsymbol{q}(t_i) \oplus \int_{t_0}^{t_e} f(\boldsymbol{q}(t_i), \boldsymbol{U}) dt$

Set of Physical Inputs

Figure) http://techartandstuff.blogspot.com/2013/07/how-to-create-accurate-car-steering-rig.html

Problem

Proposed Reachable Sets

$$R'_{i} = \boldsymbol{q}(t_{i}) \oplus \int_{t_{0}}^{t_{e}} f(\boldsymbol{q}(t_{i}), C(\boldsymbol{U}))d\boldsymbol{q}$$

Sottware Constraints

steer_angle = min(user.cmd , 30) #deg publish(steer_angle)

cmd_vel = min(cruise.vel , 120) #km/h publish(cmd_vel)

Reachability without Software Constraints

Over Approximated Reachable Set:

1) Overly Cautious -> Inefficient

Reachability without Software Constraints

Over Approximated Reachable Set:

1) Overly Cautious -> Inefficient

2) Overly Aggressive -> Unsafe

Figure) http://www.grokcode.com/864/snakefooding-python-code-for-complexity-visualization/

Preliminary Results

Robot type	Physically Bound Reachability	Software Bound Reachability	Reduction
	20.24 <i>m</i> ²	Max Velocity: $17.10m^2$ Min Velocity: $15.10m^2$ Velocity: $3.77m^2$ Max Turn Rate: $17.06m^2$ All Constraints: $1.85m^2$	16% 25% 81% 16% 91%
	716930 <i>m</i> ³	Max Pitch: $343428m^3$ Max Roll: $343428m^3$ All Constraints: $163563m^3$	52% 52% 77%

Preliminary Results

Robot type	Physically Bound Reachability	Software Bound Reachability	Reduc
	20.24 <i>m</i> ²	Max Velocity: $17.10m^2$	16%
		Min Velocity: $15.10m^2$	25%
		Velocity: $3.77 m^2$	81%
		Max Turn Rate: $17.06m^2$	16%
		All Constraints: 1.85 m^2	91%
	716930 <i>m</i> ³	Max Pitch: 343428 <i>m</i> ³	52%
		Max Roll: 343428 <i>m</i> ³	52%
		All Constraints: 163563 m^3	77%

Preliminary Results

Robot type	Physically Bound Reachability	Software Bound Reachability	Reduc
	20.24 <i>m</i> ²	Max Velocity: $17.10m^2$	16%
		Min Velocity: $15.10m^2$	25%
		Velocity: $3.77 m^2$	81%
		Max Turn Rate: $17.06m^2$	16%
		All Constraints: 1.85 m^2	91%
	716930 <i>m</i> ³	Max Pitch: 343428 <i>m</i> ³	52%
		Max Roll: 343428 <i>m</i> ³	52%
		All Constraints: 163563 m^3	77%

Conclusion

have an approach to uncovering and applying those constraints.

Contact: hildebrandt.carl@virginia.edu

This work was funded in part by the NSF

JNIVERSITY VIRGINIA SCHOOL of ENGINEERING & APPLIEĎ SCIENCE

Takeaway: The precision of reachable sets used by autonomous vehicles could be dramatically higher by considering the constraints imposed by software. We now

