

Preparing Software Engineers to Develop Robot Systems

Carl Hildebrandt, Meriel von Stein, Trey Woodlief, and Sebastian Elbaum The University of Virginia

hildebrandt.carl@virginia.edu

https://less-lab-uva.github.io/CS4501-Website/

Robotics as a field has grown steadily for the last two decades

Robotics

The robotics industry is projected to grow by 25% between 2020-2025

Robotics

Preparing our future software engineers for this has been met primarily through:

Specialized Graduate-Level Courses

CPS/Embedded Systems Courses

FL/O UNIVERSITY Gillome fallogistics 🗄 Syllabus 🗁 Resources CS 3630 Introduction to Robotics and Perception Carnegie Mellon Un RESEARCH BOUCATION NEWS EVENTS NREC PEDRUE The Robotics Institute andergradua e Options? Course I introduction to Robeck Seth Hurch 210 Collect 801 Alimitic Criac 06-464 Chemical Engineering Process Control Barbara Jean (BJ) Feckh 16-299 introduction to Newback Control Systems kortakaj san gromu istu Afanta, GA 18-370 Sundamentals of Control 24-451 Teadback Control System Gred Max 24-773 Special Topics: Multi-wariable Linear Control Jake Visha File V Abhis 16-334 Kinemaschand Dynamics 15-387 Computational Perception 15-453 (15-852) Computational Photography 16-322 Modern Sensors for Intelligent Systems 16-555 (16-730) Computer Vision achine Perception⁴ 16-423 Disigning Computer Vision Apps (not offered regularly) 16 722 Sensing and Sensers 16-886 Service Systems 35-370 Perception Logistics 10-331 Introduction to Viachine Learning Lectures wi Thansciays, i 10-715 introduction to Machine Learning (Undergrad) 11-344 Machine Learning in Process 15-381 / 15-381 Artificial intelligence 15-482 Avtenumeus Agents 16-850 Flamming Techniques For Robotics 24-430 - Special Topics: Artificial Intelligence and Machine Learning for **Ongineering** 65-335 Applications in Cognitive Science 95-328 Vladhine Learning for Iwola em Solving 16-962 Mobile Robot Algorithms Laboratory 16-423 Designing Computer Vision Apps

Massive Open Online Courses

Traditional SE Courses

Online Bachelor of Science in Software Engineering

With an online software engineering degree, you can pursue professional paths in application development, database and systems administration, software and web declosment, and more. The project/Assect carriestan will

George Mason University Meson

Software Engineering masters drives the digital space

Advances in software engineering are everywhere. Software powers the apps in our handheld devices, and the GPS in our cars.

It hails ride services, orders dinner, helps physicians diagnose disease, and protects us from cyber-attacks. With a master's degree in Software Engineering from George Mason University you will:

- Improve software -

Create innovations for computer games, business applications, operating systems, network

Specialized **Graduate-Level Courses**

/serial_node_2

Overlooks that robotics heavily relies on software.

Assumes students are familiar with software engineering.

Preparing our future software engineers for this has been met primarily through:


```
document.getElementByld
function updatePhotoDescription()
     if (descriptions.length > (page * ) + (currentinese
document.getElementById(
 -
    = function updateAllImages() {
         vari = 1;
          while (i < 10) {
    -
              var elementId = 'foto' + i;
               var elementIdBig = 'bigImage' + i;
```

Preparing our future software engineers for this has been met primarily through:

Specialized Graduate-Level Courses

Overlooks that robotics heavily relies on software.

Assumes students are familiar with software engineering.

CPS/Embedded Systems Courses

FI/10 🗎	UNIVERSITY VIRCINIA		Gillom falogistics ESyllabus (EResource
CS 3 Intro	630 duction to Robotics	s and Percep	otion
Hore Com	Carnegie Mellon University The Robotics Institute	ABOUT PEDA	LE RESEARCH EDUCATION NEWS EVENTS N
Course I	e Options?	Requirements	Choose 10 causes most one in each requirement (wo for electives):
Course I	for the later	Overview/increasonry	16 311 introduction to Faltecies
210 Collect B01 Allenta Allenta, G4: Grad Tes	Bartana Jean (R.) Fecktr Bartanaj sang orna seta	Cartraix*	06-454 Chernical Engineering Process Control 16-209 Introduction to Newback Control Systems 18-770 Sundamentals of Control 24-451 Readback Control Systems 24-773 Special Topics Wulls-variable Linear Control
 Jaka Visha 		Kinematics*	16-334 Kinemasci and Dynamics
- Fin V - Athin		Muchine Perceptiens	15-387 Computational Perception 15-483 (15-882) Computational Photography 16-882 Modern Services For Incelligent Systems 16-883 Otto 200 Computer Vision 16-823 Disigning Computer Vision Apps (not offered regularly) 16-722 Serving and Services 16-886 Service Systems 86-870 Reception
Logianis Diarariana;		Cagabiles and Reasoning*	 10-321 Introduction to Machine Learning 10-315 Introduction to Machine Learning (Undergrad) 11-344 Machine Learning in Process 15-341 / 15-331 Artificial Intelligence 15-482 Astronomena Agence 16-830 Flanning Techniques for Robustics 324-430 - Speciel Topics: Artificial Intelligence and Machine Learning for Engineering 45-235 Applications in Capitable Science 36-838 Machine Learning for Proceed Solving
			16-952 Mobile Sobot Algorithms Laboratory 16-423 Designing Computer Mislot Apps

Massive Open Online Courses

Traditional SE Courses

Online Bachelor of Science in Software Engineering

With an online software origineering degree, you can puesue professional paths in application development, database and systems administration, software and web decloyment, and more. The project/Assect carriestan will

George Mason University Man

Software Engineering masters drives the digital space

Advances in software engineering are everywhere. Software powers the apps in our handheld devices, and the GPS in our cars.

It hails ride services, orders dinner, helps physicians diagnose disease, and protects us from cyber-attacks. With a master's degree in Software Engineering from George Mason University you will:

- Improve software -

Create innovations for computer games, business applications, operating systems, network

CPS/Embedded Systems Courses

Intro Geo	duction to Robotic Carnegie Mellon University The Robotics Institute University and	ABOUT PEO	DIION RESEARCH BOUCAEIGN NEWS EVENTS NREC
ourse li	e Options?	кодинитинов	Choose 10 clumes mini, one in each requirement (wo for electively,
eth Hurch 10 Collect 01 Attentic during GA Dred Tale	Contact. Bantasa (san (BJ) Faciliti Bantasajiyang ama akta	Cantrain*	16-311 Introduction to ADBEDS 06-454 Chemical Engineering Process Control 16-239 Introduction to Revolució Control Systems 18-730 Fundamentals of Control 24-431 Feedbedk Control Systems 24-231 Seedbedk Control Systems 24-231 Seedbedk Control Systems
 Jaka/ Visha 	Kinemetics*	16-554 Kinematici and Dynamics	
 Fill V Abhin 		Muchine Perception ^a	15-387 Computational Perception 15-483 (15-882) Computational Photography 16-882 Modern Stances For Incelligent Systems 16-885 (16-820) Computer Vision 16-820 Designing Computer Vision 16-886 Senser Systems 16-886 Senser Systems 16-886 Senser Systems 16-896 Perception
octores wi heneralism		Cognition and Reasoning ⁴	10-321 Introduction to Machine Learning 10-315 Introduction to Machine Learning (Undergrad) 11-344 Machine Learning in ProciSc 15-341 / 15-331 Artificial Intelligence 15-482 Automotives Agents 16-830 Planning Techniques for Robotics 24-430 - Special Topics: Artificial Intelligence and Machine Learning for Engineering 25-325 Applications in Cognitive Science 15-838 Machine Learning for Intelligence

Tends to focus on particular aspects of robot pipeline.

Misses opportunities to discuss broader crosscutting issues.

Preparing our future software engineers for this has been met primarily through:

Preparing our future software engineers for this has been met primarily through:

Specialized **Graduate-Level Courses**

Overlooks that robotics heavily relies on software.

Assumes students are familiar with software engineering.

CPS/Embedded Systems Courses

CS 3 Intro	630 duction to Robotic	cs and Percep	otion
	The Robotics Institute	ABOUT PEDA	PLE RESEARCH BOUCADION NEWS EVENTS
Nome Ceur	e Options?	Requirements	Choose 10 causes total, one in each requirement (wo for election
Course I		Overview/intraductory	16-311 introduction to Robects
Seth Hurzhi 21 G Salesci 201 Allenta, GA: Allenta, GA: Grad Tale	Cantrain*	06-464 Chemical Engineering Process Control 16-209 Introduction to New Seck Control Systems 18-770 Rundwarentals of Control 24-451 Feedback Control Systems 24-773 Special Topics, Multi-waristic Linear Control	
 Jaka Visha 		Kinematics*	16-334 Kinematics and Dynamics
- Vicha - Pila V - Abbie		Muchine Perception ^a	15-887 Computational Perception 15-483 (15-882) Computational Photography 16-882 Modern Sensors for Incelligent Systems 16-885 (16-889) Computer Vision 16-885 Designing Computer Vision Appls (not offered regularly) 16-886 Sensor Systems 36-890 Reception
Jackanes wi Thanariaya, 1		Cagnitikas and Raasoning ^a	 10-321 Introduction to Machine Learning 10-315 Introduction to Machine Learning (Undergrad) 11-344 Machine Learning in Prototo 15-381 / 15-381 Artificial Intelligence 18-452 Astronomena Agence 18-450 Planning Techniques For Robotics 28-450 Planning Techniques For Robotics 28-450 Planning Techniques For Robotics 28-450 Planning Techniques For Robotics 28-452 Applications in Cognitive Science 36-328 Machine Learning for Problem Solving
			16-952 Viobile Robot Algorithms Laboratory

Tends to focus on particular aspects of robot pipeline.

Misses opportunities to discuss broader crosscutting issues.

Massive Open **Online Courses**

	NSTITUTE OF	TECHNOLOGY			Into Occusio
🕋 FIND CO	URSES 🗸	For Educators ~	Give Now 🗸	About - Search	Q. Sauth Tpe
	where - Mit dougs and Restance Restance International Restance Re	ts task Organization with Python an	a mise many A	delive bages. For	ovriteer fortimopie fortimopies lagit
1551CN DAIV3 905185	courses project	t network utnetwork		() ine () () al anna () () () annaichte () ()	in. An unseen ellers unit-tites calation enlig

Traditional SE Courses

Online Bachelor of Science in Software Engineering

With an online software engineering degree, you can pursue profession aths in application development, database and systems administration

Software Engineering masters drives the digital space

Advances in software engineering are everywhere. Software powers the apps in our handheld devices, and the GPS in our cars.

It hails ride services, orders dinner, helps physicians diagnose disease, and protects us from cyber-attacks. V a master's degree in Software Engineering from George Mason University you will:

Improve software

wate innovations for computer games, business applications, operating systems, network

Massive Open Online Courses

UDACITY	Why Udacity	? Student Support	is Schools v	Sign In Ge	t Started
	RSEWARE	Subscriber	to the VLW Newslert)	f 🖸	Mar I Consetta
FIND COURSES	For Educators 🗸	Give Now 🗸	About 🗸 !	Search	Q. Saurch Tge
	Robotics Robotics Advanced by the set of t	nd Particle Hitars	ring = introduction to Fol ring = introduction to Fol Associate to the dashed Present ↓ Cost a particle fi to solve the total ↓ I === rind = sources	tanta nin bapas. Eri par bar (an ya ati itar han catatira Aytan ant ti catatira Jata ant i Catatata patian.	> Learn more about why DCA results results results
MIGEC			() Nideenlade	aanlad 📄 Beaktaraaliy	
30WWI WATER				BALLE MOTION DEVICE	14
	In this para have been program from a secone, you will have be care noise around in an universal modernment, and here is reason, this will secondary once if the checks childrings is magazinest.	o nal month problem in relation of 6 discourt is care location using of feat while relation (Mircul) metages	tionithe circlating a robot the ly a tensio map and an elecation accordula, and importen-	en (hendeliter) en (Helfels beselleren is besteater) (Rebe	2) 90)
	We will take these hallenges with an artificial intelligent	certechnique calles à particle filte.		herey	
	ny ne con e ne propos, poi an fair (propos, parales) Note This ourse norta bell for tameranto an fairer i some experience in other regime.	the Kethurseniu region Writeo	naingheorgiel to brongell ig non-th	he	

Aims for a breadth of student applicants.

No prerequisites resulting in students that may lack fundamental software engineering principles.

Preparing our future software engineers for this has been met primarily through:

Preparing our future software engineers for this has been met primarily through:

Specialized **Graduate-Level Courses**

Overlooks that robotics heavily relies on software.

Assumes students are familiar with software engineering.

CPS/Embedded Systems Courses

CS 3 Intro	630 duction to Robotic	cs and Percep	otion
	The Robotics Institute	ABOUT PEDA	PLE RESEARCH BOUCADION NEWS EVENTS
Nome Ceur	e Options?	Requirements	Choose 10 causes total, one in each requirement (wo for election
Course I		Overview/intraductory	16-311 introduction to Robects
Seth Hurzhi 21 G Salesci 201 Allenta, GA: Allenta, GA: Grad Tale	Cantrain*	06-464 Chemical Engineering Process Control 16-209 Introduction to New Seck Control Systems 18-770 Rundwarentals of Control 24-451 Feedback Control Systems 24-773 Special Topics, Multi-waristic Linear Control	
 Jaka Visha 		Kinematics*	16-334 Kinematics and Dynamics
- Vicha - Pila V - Abbie		Muchine Perception ^a	15-887 Computational Perception 15-483 (15-882) Computational Photography 16-882 Modern Sensors for Incelligent Systems 16-885 (16-889) Computer Vision 16-885 Designing Computer Vision Appls (not offered regularly) 16-886 Sensor Systems 36-890 Reception
Jackanes wi Thanariaya, 1		Cagnitikas and Raasoning ^a	 10-321 Introduction to Machine Learning 10-315 Introduction to Machine Learning (Undergrad) 11-344 Machine Learning in Prototo 15-381 / 15-381 Artificial Intelligence 18-452 Astronomena Agence 18-450 Planning Techniques For Robotics 28-450 Planning Techniques For Robotics 28-450 Planning Techniques For Robotics 28-450 Planning Techniques For Robotics 28-452 Applications in Cognitive Science 36-328 Machine Learning for Problem Solving
			16-952 Viobile Robot Algorithms Laboratory

Tends to focus on particular aspects of robot pipeline.

Misses opportunities to discuss broader crosscutting issues.

Massive Open **Online Courses**

MITOPEN ARSSACHUSETTS	COURSE	EWARE TECHNOLOGY				the Consective
rind	COURSES 🗸	For Educators ~	Give Now 😔	About 🗸 🛛 Sear	ch	Q. Search Tpe
CURSE HOME COURSE HOME RETUR	Robot	4 showi Copuer base 1 ingenies Localization with Prychion a	ndrarlick Hitters	0) oode onico bu	DC) per fistypurtur/sear fisty	neper formentes lago 🛥
SSICN XAM S	Counter Droylog	tnetwork		Cash sportide filter for to solve the obstitution	n catche lyter and ce it ator polices.	
SSIGN KANS Ingeo	Courses Courses Proved Transition	a throtwork amagar		Code a particle filter has to solve the robot local Construction of the solution of a stream Construction of the solution Construction of the solution of the	n catalita Pythar ank or it oten polition. Salihanana olan Pagihanana Bakharang	

Aims for a breadth of student applicants.

No prerequisites resulting in students that may lack fundamental software engineering principles.

Traditional **SE Courses**

Online Bachelor of Science in Software Engineering

With an online software engineering degree, you can pursue profession aths in application development, database and systems administratio

Software Engineering masters drives the digital space

Advances in software engineering are everywhere. Software powers the apps in our handheld devices, and the GPS in our cars.

it hails ride services, orders dinner, helps physicians diagnose disease, and protects us from cyber-attacks. V a master's degree in Software Engineering from George Mason University you will:

ate innovations for computer games, business applications, operating systems, netwo

Preparing our future software engineers for this has been met primarily through:

Traditional SE Courses

Online Bachelor of Science in Software Engineering

U can pursue professional Systems administration.

Dulak feate

笛 Not start date

With an online software engineering degree, you can pursue professional paths in application development, database and systems administration, software and web devineers, and move. The movie of based content on will be administration of the software software and the software administration.

Software Engineering masters drives the digital space

Advances in software engineering are everywhere. Software powers the apps in our handheld devices, and the GPS in our cars.

It hails ride services, orders dinner, helps physicians diagnose disease, and protects us from cyber-attacks. With a master's degree in Software Engineering from George Mason University you will:

- Improve software -

Create innovations for computer games, business applications, operating systems, network

Does not handle aspects specific to robotic systems.

For example, representation of environment, noise, complex definitions of state.

Preparing our future software engineers for this has been met primarily through:

Specialized **Graduate-Level Courses**

Overlooks that robotics heavily relies on software.

Assumes students are familiar with software engineering.

CPS/Embedded Systems Courses

CS 3 Intro	630 duction to Robotic	cs and Percep	otion
	The Robotics Institute	ABOUT PEDA	PLE RESEARCH BOUCADION NEWS EVENTS
Nome Ceur	e Options?	Requirements	Choose 10 causes total, one in each requirement (wo for election
Course I		Overview/intraductory	16-311 introduction to Robects
Seth Hurzhi 21 G Salesci 201 Allenta, GA: Allenta, GA: Grad Tale	Cantrain*	06-464 Chemical Engineering Process Control 16-209 Introduction to New Seck Control Systems 18-770 Rundwarentals of Control 24-451 Feedback Control Systems 24-773 Special Topics, Multi-waristic Linear Control	
 Jaka Visha 		Kinematics*	16-334 Kinematics and Dynamics
- Vicha - Pila V - Abbie		Muchine Perception ^a	15-887 Computational Perception 15-483 (15-882) Computational Photography 16-882 Modern Sensors for Incelligent Systems 16-885 (16-889) Computer Vision 16-885 Designing Computer Vision Appls (not offered regularly) 16-886 Sensor Systems 36-890 Reception
Jackanes wi Thanariaya, 1		Cagnitikas and Raasoning ^a	 10-321 Introduction to Machine Learning 10-315 Introduction to Machine Learning (Undergrad) 11-344 Machine Learning in Prototo 15-381 / 15-381 Artificial Intelligence 18-452 Astronomena Agence 18-450 Planning Techniques For Robotics 28-450 Planning Techniques For Robotics 28-450 Planning Techniques For Robotics 28-450 Planning Techniques For Robotics 28-452 Applications in Cognitive Science 36-328 Machine Learning for Problem Solving
			16-952 Viobile Robot Algorithms Laboratory

Tends to focus on particular aspects of robot pipeline.

Misses opportunities to discuss broader crosscutting issues.

Massive Open **Online Courses**

Aims for a breadth of student applicants.

No prerequisites resulting in students that may lack fundamental software engineering principles.

Traditional **SE Courses**

Online Bachelor of Science in Software Engineering with an online software engineering degree, you can pursue profession

Software Engineering masters drives the digital space

Advances in software engineering are everywhere. Software powers the apps in our handheld devices, and the GPS in our cars

It hails ride services, orders dinner, helps physicians diagnose disease, and protects us from cyber-attacks. V a master's degree in Software Engineering from George Mason University you will:

Improve software

ovations for computer games, business applications, operating systems, netwo

Does not handle aspects specific to robotic systems.

For example, representation of environment, noise, complex definitions of state.

05/16/2022 D Total classes: 4 S Weeks per class: 7

Dulick finate

笛 Not start da/

Developing a course that would enable upper-level undergraduate students in computational disciplines to gain expertise on foundational aspects of software development for robotics

Specifications

Testing

Reuse

Link between Software Engineering and Robotics

Uncertainty representation

Design patterns

Abstractions

States

- 1. Multidisciplinary and rapidly expanding field
- 2. How to distribute the emphasis between robotics and software engineering
- 3. No available integrated platform
- 4. Robotics courses can require significant upfront investment in equipment

- Multidisciplinary and rapidly expanding 1. field
- 2. How to distribute the emphasis between robotics and software engineering
- 3. No available integrated platform
- 4. Robotics courses can require significant upfront investment in equipment

- Multidisciplinary and rapidly expanding 1. field
- 2. How to distribute the emphasis between robotics and software engineering
- 3. No available integrated platform
- 4. Robotics courses can require significant upfront investment in equipment

- Multidisciplinary and rapidly expanding 1. field
- 2. How to distribute the emphasis between robotics and software engineering
- 3. No available integrated platform
- 4. Robotics courses can require significant upfront investment in equipment

Anki Cosmo

Duckytown

- Multidisciplinary and rapidly expanding 1. field
- 2. How to distribute the emphasis between robotics and software engineering
- 3. No available integrated platform
- 4. Robotics courses can require significant upfront investment in equipment

• • •

P1	Prioritize the challenges of ro
P2	Focus on the unique software e robo
P3	Provide opportunities for experier refle
P4	Lower adoption barriers
P5	Reinforce foundation

Principle

obotics that are unique from other CS systems

engineering techniques and practices required by ot system development

ntial learning to encourage students to practice and ect on their experience

s by making the material more accessible

P1	Prioritize the challenges of ro
P2	Focus on the unique software e robo
P3	Provide opportunities for experier refle
P4	Lower adoption barriers
P5	Reinforce foundationa

Multidisciplinary and rapidly expanding field

Principle

obotics that are unique from other CS systems

engineering techniques and practices required by ot system development

ntial learning to encourage students to practice and ect on their experience

s by making the material more accessible

P1	Prioritize the challenges of ro
P2	Focus on the unique software e robo
P3	Provide opportunities for experier refle
P4	Lower adoption barriers
P5	Reinforce foundation

How to distribute the emphasis between robotics and software engineering

Principle

obotics that are unique from other CS systems

engineering techniques and practices required by ot system development

ntial learning to encourage students to practice and ect on their experience

s by making the material more accessible

P1	Prioritize the challenges of ro
P2	Focus on the unique software e robo
P3	Provide opportunities for experier refle
P4	Lower adoption barriers
P5	Reinforce foundation

No available integrated platform

Principle

obotics that are unique from other CS systems

engineering techniques and practices required by ot system development

ntial learning to encourage students to practice and ect on their experience

s by making the material more accessible

P1	Prioritize the challenges of ro
P2	Focus on the unique software e robo
P3	Provide opportunities for experier refle
P4	Lower adoption barriers
P5	Reinforce foundation

Robotics courses can require significant upfront investment in equipment

Principle

obotics that are unique from other CS systems

engineering techniques and practices required by st system development

ntial learning to encourage students to practice and ect on their experience

s by making the material more accessible

Course Overview

We used these principles when designing the course

Principle

Prioritize the challenges of robotics that are unique from other CS systems

Focus on the unique software engineering techniques and practices required by robot system development

Provide opportunities for experiential learning to encourage students to practice and reflect on their experience

Lower adoption barriers by making the material more accessible

Reinforce foundational material across both SE and robotics

Lecture Lab Pairing

Labs

Lecture Lab Pairing

Introduction to ROS

Introduction

Introducing robotics

Labs

Set up

Lecture Lab Pairing

Describing the development lifecycle

Labs

ROS and Simulation

Set up

Lecture Lab Pairing

Describing how systems are implemented in reality

Introducing state machines

Types and machines

ROS and Simulation environment

Set up

Labs

Lecture Lab Pairing

Robot and world through sensors

> Software Machinery

Development **Features**

Introduction

Lecture Lab Pairing

Labs

Perception though Analyzing Images

and fusion

Types and machines

ROS and Simulation

Set up

environment

Controlling your robot

Perception

Robot and world through sensors

> Software Machinery

Development Features

Introduction

self.test_duration = rospy.get_param(rospy.get_name() + '/duration')

Lecture Lab Pairing

Path Planning: Grid Methods

│ ╿┼ ┩┤┩─	│ ●│●	I ¶+I	•¦∙-	₽ ∣₽	┼╺┼╺╴	┝╼┩┤┩╴╽
•-•	6.	•••	• •	• •	••	-
•++•		•	• •	• •		-••• a
••-•			• •	•		••
••-•			•	•		•+•

Introducing motion planning and data structures used to by software engineers for creating plans

Mapping and **Motion Planning**

testing robots

Analyzing Images

and fusion

Types and machines

ROS and Simulation

Set up

Lecture Lab Pairing

2D Transform - rotation

Where is P in O?

Multiple Coordinate Systems

- 3D World reference frames
- Multiple conventions

Using transformations to track a ground robot transmitting in a different coordinate system

Introducing the coordinate systems and the math behind the transformations

10.0 7.5 5.0

0.0 -2.5

Labs

Mapping and **Motion Planning**

Controlling and testing robots

Perception though Analyzing Images

and fusion

Types and machines

ROS and Simulation

Industry perspective: Guest Speaker

Allowed students to interact and ask questions about what the issues are in industry, and how what they are learning will be applied in the real world

Crosscutting Issues

Ethics Lab

Allowed students to debate ethical issues that will arise as robotics becomes more apparent in all our lives. No right or wrong answers, we just wanted to allow students to start thinking about these issues.

We apply these principles to bring several innovations to this course

Innovations

We apply these principles to bring several innovations to this course

	Innovation	P1	P2	P3	P4	Ρ
11	Cover robotics fundamentals					
12	Offer different levels of abstraction					
13	Pair SE and Robotics topics throughout the course					
14	Enable students to make design and implementation decisions in labs and project					
15	Make use of demonstration, conversation, and checkpoints					
16	Use a drone simulator for hands-on experience					
17	Incrementally build concepts to minimize required background knowledge in robotics					
18	Incorporate flexibility into the course schedule and allow for self-paced labs					

Conceptual Architecture

Example Lecture

Aim: introduce the fundamental concepts related to robotics architecture and modeling machinery in robotics

Conceptual Architecture

Hierarchical/Deliberative my "Roomba"

- World is too complex to model accurately / completely
- World changes faster than we can plan for it
- Difficult to extend functionality due to layers dependencies

Example Lecture

Aim: introduce the fundamental concepts related to robotics architecture and modeling machinery in robotics

Begins with the basic conceptual architecture of robotics (I1 - Cover robotics fundamentals)

Example Lecture

Aim: introduce the fundamental concepts related to robotics architecture and modeling machinery in robotics

Begins with the basic conceptual architecture of robotics (I1 - Cover robotics fundamentals)

> Covers critical domain-specific architectures (17 - Incrementally build concepts)

Example Lecture

Aim: introduce the fundamental concepts related to robotics architecture and modeling machinery in robotics

Begins with the basic conceptual architecture of robotics (I1 - Cover robotics fundamentals)

> Covers critical domain-specific architectures (17 - Incrementally build concepts)

Discuss design tradeoffs over different scenarios (15 - Demonstration, conversation, and checkpoints)

Conceptual Architecture

Hierarchical/Deliberative my "Roomba"

Dominant Architectural Types: Probabilistic

Reality is a bit messier

States and Machines

Different modes (states), imply different interpretation of commands

Conceptual https://divdrones.com/profiles/blogs/px4-flight-mode-switching-newigation-state-machine-in-Closer to code https://docs.px4.io/master/en/concept/flight_modes.htm

Example Lecture

Aim: introduce the fundamental concepts related to robotics architecture and modeling machinery in robotics

Begins with the basic conceptual architecture of robotics (I1 - Cover robotics fundamentals)

> Covers critical domain-specific architectures (17 - Incrementally build concepts)

Discuss design tradeoffs over different scenarios (15 - Demonstration, conversation, and checkpoints)

Introduce FSMs

-what types of states they can encode

- -how they can assist in understanding the real world
- -how they are represented in code

-how to scale them up to develop robotic systems (I3 - Pair SE and Robotics topic)

In this lab, we will work on three types of abstractions that we use in robotics to help us manage system complexity. First, we will keep working on separating functionality into ROS nodes. We will then further separate code within a node based on a system's natural discrete states. Such discrete states are commonly found in robotics and often managed through finite state machines. For instance, the 2001 Mars Odyssey spacecraft, NASA's longest-lasting spacecraft at Mars, consists of multiple stages (states). At each of these states, the spaceship is performing unique functionality, and under certain events, it will transition from one state to the next.

Second, we will work on generalizing the applicability of robot systems by parameterizing their functionality. Abstracting parameters from the code and placing them in a more accessible place is common in software engineering. By making parameters configurable during deployment, the system functionality can be tailored without modifying the code. Last, we will work on abstracting functionality that must be provided synchronously by defining our own services.

Example Lab

Starts highlighting how what is learned is implemented in real systems.

In this lab, we will work on three types of abstractions that we use in robotics to help us manage system complexity. First, we will keep working on separating.

Create the State and Safety Node

The first step in improving the drone's control software will be to create the node. We will start the implementation of this node by only considering the first objective:

Track the mission state of the drone

To start pull the latest code inside your virtual machine.

- # Change to lab directory
- \$ od -/Desktop/C84501-Labs/
- ∉ Clone the code
- \$ git pull

You should see a new workspace labs vs . This workspace will have the keyboard node and keyboard manager already implemented for you.

To track the drone's mission state, we are going to need to create a new node in the simple_control package. Create a new node in simple_control package in the 1ab3_ws_workspace called_state_and_safety.py_using what you have learned from Lab1 and Lab 2.

The software of a robot operation can be complex. One way to manage this complexity is to decouple the functionality based on the system discrete states and then organize the system as a Finite State Automaton (FSA). An FSA is a mathematical computation model that can be in exactly one of a finite number of states at any given time, and where the system can make well-defined transitions from one state to another in response to inputs or events. Using an FSA we will design the state_and_safety.py node as follows

Starts highlighting how what is learned is implemented in real systems.

Starts with implementing a basic FSM (I3 - Pair SE and Robotics topic)

I work on three types of abstractions that we use in robotics to help us manage system complexity. First, we will keep working on separating

Create the State and Safety Node

(iii be to create the node. We will start the implementation of this node by only considering the first objectiv

A useful resource to notice: ROS Logging

You will notice that this code no longer uses a standard print command. Each of the print commands has been replaced with a rospy.loginto(str(rospy.got_name()) + '...') command. Using a log command in ROS is a good practice. A print command will print a message to the terminal, with no extra logging information. A rospy.loginfo() command will print a message to the terminal, as well as keep that message inside the ROS logs. That way, you can go back and review your robot's behavior at a later stage. We also added the following string to each log: str(rospy.get_name()). This is beneficial when there are more than two nodes printing messages to the terminal, as we will be able to differentiate messages from separate nodes more easily. ROS logging allows you to create levels of messages so that important messages and less important messages can be distinguished. The most important messages are called fatal messages. To publish a fatal message, you use the command rospy.logfatal(). The lowest level of a message is a debug message which can be logged using rospy.logdebug(). More on ROS logging can be found on the ROS Wiki.

Starts highlighting how what is learned is implemented in real systems.

> Starts with implementing a basic FSM (I3 - Pair SE and Robotics topic)

Highlight how ROS allows for looking information allowing for easy debugging (I1 - Cover robotics fundamentals)

pes of abstractions that we use in robotics to help us manage system complexity. First, we will keep working on separating

Create the State and Safety Node

A useful resource to notice: ROS Logging

Checkpoint 1

Launch the simulator and check that you have correctly created the state and safety node as well as changed the keyboard manager to publish the correct data. Your ROS computation graph should look like the one below. Take a screenshot of the ROS computation graph:

Next, try to fly the quadrotor using the keyboard. Change the requested position using the keyboard keys. Once you have selected a position, hit the ENTER key to move the drane

What happens when you hit the enter key? Answer this in terms of the FSA states we implemented

2. What happens when you request the drone to fly to a second position? Answer this in terms of the actual code used in state and safety, py

Example Lab

Starts highlighting how what is learned is implemented in real systems.

> Starts with implementing a basic FSM (I3 - Pair SE and Robotics topic)

Highlight how ROS allows for looking information allowing for easy debugging (I1 - Cover robotics fundamentals)

Checkpoint allowing reflection and discussion while allowing freedom to implement their own solution (14 - Students make design and implementation decisions) (15 - Demonstration, conversation, and checkpoints)

bes of abstractions that we use in robotics to help us manage system complexity. First, we will keep working on separating

Create the State and Safety Node

A useful resource to notice: ROS Logging

Checkpoint 1

aunch the simulator and check that you have correctly created the state and safety node as well as changed the keyboard manager to publish the correct data. Your

Adding a Verifying State

apply parameter servers, let's start by adding a verification state to forbid the quadrotor from flying outside of a virtual cage. Verifying that a waypoint is geofence (a virtual cage) is a good practice as it makes sure that you do not accidentally send a waypoint to the quadrotor that causes it to fly away or crash. wn obstacle. In general, most commands sent to a robot that is going to result in the robot performing some action in the real-world should be verified for the safety of both the people around it and itse

Example Lab

Starts highlighting how what is learned is implemented in real systems.

> Starts with implementing a basic FSM (I3 - Pair SE and Robotics topic)

Highlight how ROS allows for looking information allowing for easy debugging (I1 - Cover robotics fundamentals)

Checkpoint allowing reflection and discussion while allowing freedom to implement their own solution (14 - Students make design and implementation decisions) (15 - Demonstration, conversation, and checkpoints)

Add a verifying state that emphasizes developing code that is easily parameterizable allowing easy reuse (I3 - Pair SE and Robotics topic)

bstractions that we use in robotics to help us manage system complexity. First, we will keep working on separatin

Create the State and Safety Node

A useful resource to notice: ROS Logging

Checkpoint 1

aunch the simulator and check that you have correctly created the state and safety node as well as changed the keyboard manager to publish the correct data. You

Adding a Verifying State

dding a verification state to forbid the quadrotor from flying outside of a virtual cage. Verifying that a waypoint is

Verifying that Waypoints are within Cage

Next lets adapt our FSA to include a verifying state. This verification state will verify the command position and make sure it is inside the cage before transitioning to a moving state. The design for the final state_and_safety_node will be as follows

Example Lab

Starts highlighting how what is learned is implemented in real systems.

> Starts with implementing a basic FSM (I3 - Pair SE and Robotics topic)

Highlight how ROS allows for looking information allowing for easy debugging (I1 - Cover robotics fundamentals)

Checkpoint allowing reflection and discussion while allowing freedom to implement their own solution (14 - Students make design and implementation decisions) (15 - Demonstration, conversation, and checkpoints)

Add a verifying state that emphasizes developing code that is easily parameterizable allowing easy reuse (13 - Pair SE and Robotics topic)

Make the FSM slightly more complicated, allowing for more complex behavior. (17 - Incrementally build concepts)

es of abstractions that we use in robotics to help us manage system complexity. First, we will keep working on separatin

Create the State and Safety Node

A useful resource to notice: ROS Logging

Checkpoint 1

aunch the simulator and check that you have correctly created the state and safety node as well as changed the keyboard manager to publish the correct data. You

Adding a Verifying State

adding a verification state to forbid the quadrotor from flying outside of a virtual cage. Verifying that a waypoint is

Verifying that Waypoints are within Cage

Checkpoint 2

aunch the simulator and check that you have correctly created the state and safety node as well as changed the keyboard manager to publish the correct data. Your ROS computation graph should look like, as shown below. Take a screenshot of the ROS computation graph

Example Lab

Starts highlighting how what is learned is implemented in real systems.

> Starts with implementing a basic FSM (I3 - Pair SE and Robotics topic)

Highlight how ROS allows for looking information allowing for easy debugging (I1 - Cover robotics fundamentals)

Checkpoint allowing reflection and discussion while allowing freedom to implement their own solution (14 - Students make design and implementation decisions) (15 - Demonstration, conversation, and checkpoints)

Add a verifying state that emphasizes developing code that is easily parameterizable allowing easy reuse (13 - Pair SE and Robotics topic)

Make the FSM slightly more complicated, allowing for more complex behavior. (17 - Incrementally build concepts)

vpes of abstractions that we use in robotics to help us manage system complexity. First, we will keep working on separating

Create the State and Safety Node

A useful resource to notice: ROS Logging

Checkpoint 1

aunch the simulator and check that you have correctly created the state and safety node as well as changed the keyboard manager to publish the correct data. Your

Adding a Verifying State

ers, let's start by adding a verification state to forbid the quadrotor from flying outside of a virtual cage. Verifying that a waypoint is

Verifying that Waypoints are within Cage

Checkpoint 2

Launch the simulator and check that you have correctly created the state and safety node as well as changed the keyboard manager to publish the correct data. Your ROS computation graph should look like, as shown below. Take a screenshot of the ROS computation graph:

Example Lab

Starts highlighting how what is learned is implemented in real systems.

> Starts with implementing a basic FSM (I3 - Pair SE and Robotics topic)

Highlight how ROS allows for looking information allowing for easy debugging (I1 - Cover robotics fundamentals)

Checkpoint allowing reflection and discussion while allowing freedom to implement their own solution (14 - Students make design and implementation decisions) (15 - Demonstration, conversation, and checkpoints)

Add a verifying state that emphasizes developing code that is easily parameterizable allowing easy reuse (I3 - Pair SE and Robotics topic)

Make the FSM slightly more complicated, allowing for more complex behavior. (17 - Incrementally build concepts)

Locate itself

Locate object, avoiding obstacles

Collect the object

Return to safe area

[INFO] [1649780894.778982, 22.343751]: /state_safety_node: Complete [INFO] [1649780894.782016, 22.343751]: /state_safety_node:

[INFO] [1649788894.785347, 22.343751]: /state_safety_node: Current State: HOVER1

. . . .

What worked well

Lessons Learned

What needs improvement

- 1. Pairing SE and robotics topics
- 2. Building flexibility into the course
- 3. Using different levels of abstraction
- 4. Incremental scaffolding of course material
- 5. Team structure and process
- 6. Demonstrating and reflecting during checkpoints

- 1. Pairing SE and robotics topics
- Building flexibility into the course 2.
- 3. Using different levels of abstraction
- 4. Incremental scaffolding of course material
- 5. Team structure and process
- Demonstrating and reflecting during 6. checkpoints

Торіс	Lab
Introduction	Lab-1: Set up and Basic ROS
Distinguishing Development Features	Lab-2: ROS processes, communication, and simulation environment
Software Machinery + Q1	Lab-3: Types and machines
Robot and world through sensors	Lab-4: Sensor filtering and fusion
Perception + Q2	Lab-5: Perception though Analyzing Images
UVA Break Day	Invited Speaker
Controlling your robot	Lab-E: Robotics and Ethics
Making plans + Q3	Lab-6: Controlling and testing robots
Localization and navigation	Lab-7: Mapping and Motion Planning
Transformations	Lab-8: Transformations
Advanced Robotics + Q4	UVA Break Day
Project parameters	Project consult
Project check	Project consult
Project Presentations and Demos	Taking stock

- Pairing SE and robotics topics 1.
- 2. Building flexibility into the course
- 3. Using different levels of abstraction
- 4. Incremental scaffolding of course material
- 5. Team structure and process
- Demonstrating and reflecting during 6. checkpoints

Торіс	Lab
Introduction	Lab-1: Set up and Basic ROS
Distinguishing Development Features	Lab-2: ROS processes, communication, and simulation environment
Software Machinery + Q1	Lab-3: Types and machines
Robot and world through sensors	Lab-4: Sensor filtering and fusion
Perception + Q2	Lab-5: Perception though Analyzing Images
UVA Break Day	Invited Speaker
Controlling your robot	Lab-E: Robotics and Ethics
Making plans + Q3	Lab-6: Controlling and testing robots
Localization and navigation	Lab-7: Mapping and Motion Planning
Transformations	Lab-8: Transformations
Advanced Robotics + Q4	UVA Break Day
Project parameters	Project consult
Project check	Project consult
Project Presentations and Demos	Taking stock

- Pairing SE and robotics topics 1.
- 2. Building flexibility into the course
- 3. Using different levels of abstraction
- 4. Incremental scaffolding of course material
- 5. Team structure and process
- 6. Demonstrating and reflecting during checkpoints

- Pairing SE and robotics topics 1.
- Building flexibility into the course 2.
- 3. Using different levels of abstraction
- 4. Incremental scaffolding of course material
- 5. Team structure and process
- Demonstrating and reflecting during 6. checkpoints

Topic

Introduction

Distinguishing Development Features

Software Machinery + Q1

Robot and world through sensors

Perception + Q2

UVA Break Day

Controlling your robot

Making plans + Q3

Localization and navigation

Transformations

Advanced Robotics + Q4

Project parameters

Project check

Project Presentations and Demos

- 1. Pairing SE and robotics topics
- 2. Building flexibility into the course
- 3. Using different levels of abstraction
- 4. Incremental scaffolding of course material
- 5. Team structure and process
- 6. Demonstrating and reflecting during checkpoints

Current Team

- Pairing SE and robotics topics 1.
- Building flexibility into the course 2.
- 3. Using different levels of abstraction
- 4. Incremental scaffolding of course material
- 5. Team structure and process
- 6. Demonstrating and reflecting during checkpoints

1.Diversity of student machines presents a continual challenge

2.Requires identification of fundamental robotic topics and matching SE principles

3.Freedom of design and implementation requires more time for checking and discussion

4.Defining prerequisites for the course is challenging

5.Require a way to empirically assess the success of this course

1.Diversity of student machines presents a continual challenge

2.Requires identification of fundamental robotic topics and matching SE principles

3.Freedom of design and implementation requires more time for checking and discussion

4.Defining prerequisites for the course is challenging

5.Require a way to empirically assess the success of this course

1. Diversity of student machines presents a continual challenge

2.Requires identification of fundamental robotic topics and matching SE principles

3.Freedom of design and implementation requires more time for checking and discussion

4.Defining prerequisites for the course is challenging

5.Require a way to empirically assess the success of this course

1.Diversity of student machines presents a continual challenge

2.Requires identification of fundamental robotic topics and matching SE principles

3.Freedom of design and implementation requires more time for checking and discussion

4.Defining prerequisites for the course is challenging

5.Require a way to empirically assess the success of this course

Requires discussion and time

1. Diversity of student machines presents a continual challenge

2.Requires identification of fundamental robotic topics and matching SE principles

3.Freedom of design and implementation requires more time for checking and discussion

4.Defining prerequisites for the course is challenging

5.Require a way to empirically assess the success of this course

1.Diversity of student machines presents a continual challenge

2.Requires identification of fundamental robotic topics and matching SE principles

3.Freedom of design and implementation requires more time for checking and discussion

4.Defining prerequisites for the course is challenging

5.Require a way to empirically assess the success of this course

This year we have 75 students!

Impact

4 Ended up in Robotics Industry

"During the interview, I talked about your course a great deal" "[I talked about] how path planning differs in this scenario versus a UGV or drone type system" "I grew a lot throughout it [the course]"

"I actually used some concepts we learned about in class in my interviews, and I think it helped a lot!" "I think it was a great way to understand the fundamentals of robotics!"

Conclusion

Introduced a course aiming at equipping students with a unique understanding of the challenges in developing the software underlying robotic systems and a set of tools to address those challenges

Conclusion

Introduced a course aiming at equipping students with a unique understanding of the challenges in developing the software underlying robotic systems and a set of tools to address those challenges

Goal and Scope

Developing software for robot systems is challenging as they must sense, actuate, and represent the physical world. Sensing the physical world is usually noisy, actuating in and on the world is often inaccurate, and the knowledge and representation of the world is incomplete and uncertain, in this class we will explore software engineering approaches to cope with those challenges. You will learn to use comain-specific abstractions, architectures, libraries, and validation approaches and tools to safely perform robot activities like motion, navigation, perception. planning, and interaction. The expectation is that this course will open up new career options in robotics for our students.

Class location and time

- Tuesday and Thursday from 200PM to 330PM
- · Class will be online, with most lectures on Tuesdays and labs on Thursdays

Office Hours

- Trey Woodlief: Mondays 9AM-11AM
- Meriel Steir: Thursdays 9AM-TIAM
- Sebast an Elbaum: Friday 9AM-10AM or by email request

